Experience With

Model Serialization (mostly in ATLAS)

https://indico.cern.ch/event/1197680/contributions/5144405/

Motivation: Production ML in HEP

HEP Land

- Lots of C++
- Event Pipelines
- Lots of legacy
- Moves slow

ML Land

- Python
- Batched
- Minimal legacy
- Moves fast
- Many Dependencies

Default solution: Shipping the data

Shipping the model

Back in the dark ages... (Sep 2015)

- There were no inference engines
- Every ML framework
 - Had its own serialization
 - Did its own inference
 - Had a million dependencies
 - Had zero stability
- So we wrote our own (<u>lwtnn</u>)
 - Serialized to JSON
 - Separate inputs, outputs, data, graph
 - Started small: sequential models
 - Latter added graphs
- We store networks <u>on a file system</u>
 - Write only, locally cached on demand

Model exploration (tau again)

```
> curl -s https://atlas-groupdata.web.cern.ch/atlas-groupdata/tauRecTools/R22 preprod/rnnid mc16d config 3p.json | egrep 'name'
     "name": "tracks",
          "name": "pt log",
          "name": "pt jetseed log",
          "name": "d0 abs log",
          "name": "z0sinThetaTJVA abs log",
          "name": "dEta",
          "name": "dPhi"
          "name": "nInnermostPixelHits",
          "name": "nPixelHits",
          "name": "nSCTHits".
      "name": "clusters"
          "name": "et log",
          "name": "pt jetseed log",
          "name": "dEta",
          "name": "dPhi",
          "name": "SECOND R",
          "name": "SECOND LAMBDA",
          "name": "CENTER LAMBDA"
      "name": "scalar",
          "name": "centFrac",
          "name": "etOverPtLeadTrk".
          "name": "dRmax",
          "name": "trFlightPathSig"
          "name": "SumPtTrkFrac",
          "name": "EMPOverTrkSysP",
          "name": "ptRatioEflowApprox",
          "name": "mEflowApprox",
          "name": "ptIntermediateAxis",
          "name": "massTrkSys",
```

- Easy to answer "what inputs were in this NN"
 - The primary source is just one 'curl' command away
- We also added some graph parsing tools
- We could compress to 30% of the current size
 - Before compression, most NNs smaller than 2 MB
 - Never bothered in practice

And that worked good for a while...

- A lot of NNs weren't worth saving
 - We never had to deal with convolutions
- Some things actually got simpler
 - RNNs → Deep Sets
- Serialization was just small tweaks

$$h_{\text{final}} = \sum_{t} x_{t}$$

Two developments changed things

Above: <u>ATLAS trigger b-jet discriminant</u>, via <u>netron</u>

- Graph networks / attention → Actually a pretty good idea
- 2. More industry support for inference
 - a. We installed **ONNX Runtime** (not to be confused with *an* ONNX runtime)
 - i. reads <u>Open Neural Network eXchange</u> files
 - ii. Took O(1 year), still build with patches
 - b. And started supporting ONNX files

What is great / terrible about ONNX

- Supports many operators
 - o around **187**, lwtnn is around 20
 - They are carefully versioned
 - ... but still not universal support
- Lots of tooling for interpretation
 - Visualization, autodiff, inspection
 - Many "runtimes"
 - in practice we only use one
- Allows metadata
 - Protobuf is less readable than json
 - We added some scripts to extract it

Meanwhile, BDTs

ATLAS has MVAUtils in Athena, stores BDTs as ROOT trees Not moving very fast dmlc XGBoost **Athena**

What has worked well generally

- Store endpoint metadata
 - ML frameworks map vector to vector → most bugs are swapped inputs
 - We had to write some tools for ONNX

Write with reuse in mind

- Avoid unversioned code, notebooks, etc.
- Avoid data dependencies

Goals beyond papers and talks are important

- Code / data as a citable product would be nice
- o (more specific to production) The training pipeline should be viewed as a dependency

What's next? (wild speculation starts here)

Will ONNX save the day?

- Pro: there's a <u>well defined specification</u>, with many community contributors
 - Brought to you (in part) by Microsoft. What a time to be alive!
- Con: common standards always lag, big players have their own inference frameworks

Or should we just use containers?

Review: Open Questions

- Is there a need for a lighter format than ONNX?
 - How about a lighter library than ONNX Runtime?
- What about BDTs?
 - There doesn't seem to be a standard here
- How much should we "containerize"?
 - But model conversion isn't "free"
 - It's sort of annoying
 - Passing data to a container is the ultimate "black box"
 - Not great if you want to compare models
- Do we want to preserve the final NN, or the whole optimization?
 - In production we consider the training pipeline important

Backup Slides

About that attention unit

(Failed) Model Exploration

https://netron.app/?url=https://atlas-groupdata.web.cern.ch/atlas-groupdata/BTagging/20220813trig/gn1/antikt4empflow/network.onnx

The pain points

- Experiment operates like a franchise
 - Many autonomous groups
 - o (relatively) small central budget
- We're light on "software engineers"
 - A good data-heavy shop is 1:1 engineer:researcher
 - We're pretty much all researchers
 - Our engineers are often short tenure

- Machine learning software is ugly
 - Fast moving, with lots of dependencies
- ATLAS has one repository for trigger, reconstruction, simulation, and analysis

More network exchange formats

https://www.khronos.org/nnef

Room for collaboration

- Build a common minimal-dependency library
- Tools to interface with / examine ONNX models
 - We might even become contributors
- Better container infrastructure / training