
Experience With

Model Serialization
(mostly in ATLAS)

https://indico.cern.ch/event/1197680/contributions/5144405/
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Motivation: Production ML in HEP
HEP Land ML Land
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● Lots of C++
● Event Pipelines
● Lots of legacy
● Moves slow

● Python
● Batched
● Minimal legacy
● Moves fast

● Many Dependencies



Default solution: Shipping the data
HEP Land ML Land
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Shipping the model
HEP Land Container
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Back in the dark ages… (Sep 2015)
● There were no inference engines
● Every ML framework

○ Had its own serialization
○ Did its own inference
○ Had a million dependencies
○ Had zero stability

● So we wrote our own (lwtnn)
○ Serialized to JSON
○ Separate inputs, outputs, data, graph
○ Started small: sequential models

■ Latter added graphs

● We store networks on a file system
○ Write only, locally cached on demand

random Tau ID model I found 5

https://github.com/lwtnn/lwtnn/commit/47cf407df501d6e46cdccaa1157dc287d33aac24
https://github.com/lwtnn/lwtnn
https://atlas-groupdata.web.cern.ch/atlas-groupdata/
https://atlas-groupdata.web.cern.ch/atlas-groupdata/tauRecTools/R22_preprod/rnnid_mc16d_config_3p.json


> curl -s https://atlas-groupdata.web.cern.ch/atlas-groupdata/tauRecTools/R22_preprod/rnnid_mc16d_config_3p.json | egrep 'name'
     "name": "tracks",
          "name": "pt_log",
          "name": "pt_jetseed_log",
          "name": "d0_abs_log",
          "name": "z0sinThetaTJVA_abs_log",
          "name": "dEta",
          "name": "dPhi",
          "name": "nInnermostPixelHits",
          "name": "nPixelHits",
          "name": "nSCTHits",
      "name": "clusters",
          "name": "et_log",
          "name": "pt_jetseed_log",
          "name": "dEta",
          "name": "dPhi",
          "name": "SECOND_R",
          "name": "SECOND_LAMBDA",
          "name": "CENTER_LAMBDA",
      "name": "scalar",
          "name": "centFrac",
          "name": "etOverPtLeadTrk",
          "name": "dRmax",
          "name": "trFlightPathSig",
          "name": "SumPtTrkFrac",
          "name": "EMPOverTrkSysP",
          "name": "ptRatioEflowApprox",
          "name": "mEflowApprox",
          "name": "ptIntermediateAxis",
          "name": "massTrkSys",

Model exploration (tau again)
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● Easy to answer “what inputs were in this NN”
○ The primary source is just one `curl` command away

● We also added some graph parsing tools
● We could compress to 30% of the current size

○ Before compression, most NNs smaller than 2 MB
○ Never bothered in practice

https://atlas-groupdata.web.cern.ch/atlas-groupdata/tauRecTools/R22_preprod/rnnid_mc16d_config_3p.json
https://github.com/lwtnn/network-viewer/blob/master/draw-network.py


And that worked good for a while…
● A lot of NNs weren’t worth saving

○ We never had to deal with convolutions

● Some things actually got simpler
○ RNNs → Deep Sets

● Serialization was just small tweaks
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Useful part

Image credit: Christopher Olah

http://colah.github.io/posts/2015-08-Understanding-LSTMs/


Two developments changed things

1. Graph networks / attention → Actually a pretty good idea
2. More industry support for inference

a. We installed ONNX Runtime (not to be confused with an ONNX runtime)
i. reads Open Neural Network eXchange files
ii. Took O(1 year), still build with patches

b. And started supporting ONNX files
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Above: ATLAS trigger b-jet discriminant, via netron

https://onnxruntime.ai/
https://github.com/onnx
https://atlas-groupdata.web.cern.ch/atlas-groupdata/BTagging/20220813trig/gn1/antikt4empflow/network.onnx
https://doi.org/10.5281/zenodo.5854961


What is great / terrible about ONNX
● Supports many operators 

○ around 187, lwtnn is around 20
○ They are carefully versioned
○ … but still not universal support

● Lots of tooling for interpretation
○ Visualization, autodiff, inspection
○ Many “runtimes”

■ in practice we only use one

● Allows metadata
○ Protobuf is less readable than json
○ We added some scripts to extract it
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Meanwhile, BDTs
● ATLAS has MVAUtils in Athena, stores BDTs as ROOT trees
● Not moving very fast
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Athena

https://gitlab.cern.ch/atlas/athena/-/tree/master/Reconstruction/MVAUtils


What has worked well generally
● Store endpoint metadata

○ ML frameworks map vector to vector → most bugs are swapped inputs
○ We had to write some tools for ONNX

● Write with reuse in mind
○ Avoid unversioned code, notebooks, etc
○ Avoid data dependencies

● Goals beyond papers and talks are important
○ Code / data as a citable product would be nice
○ (more specific to production) The training pipeline should be viewed as a dependency
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What’s next?
(wild speculation starts here)
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Will                  save the day?

● Pro: there’s a well defined specification, with many community contributors
○ Brought to you (in part) by Microsoft. What a time to be alive!

● Con: common standards always lag, big players have their own inference frameworks 13

https://github.com/onnx/onnx/blob/master/docs/IR.md


Or should we just use containers?
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Review: Open Questions
● Is there a need for a lighter format than ONNX?

○ How about a lighter library than ONNX Runtime?

● What about BDTs?
○ There doesn’t seem to be a standard here

● How much should we “containerize”?
○ But model conversion isn’t “free”

■ It’s sort of annoying
○ Passing data to a container is the ultimate “black box”

■ Not great if you want to compare models

● Do we want to preserve the final NN, or the whole optimization?
○ In production we consider the training pipeline important
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Backup
Slides

16



About that attention unit
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(Failed) Model Exploration
https://netron.app/?url=https://atlas-groupdata.web.cern.ch/atlas-groupdata/BTaggi
ng/20220813trig/gn1/antikt4empflow/network.onnx 
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https://netron.app/?url=https://atlas-groupdata.web.cern.ch/atlas-groupdata/BTagging/20220813trig/gn1/antikt4empflow/network.onnx
https://netron.app/?url=https://atlas-groupdata.web.cern.ch/atlas-groupdata/BTagging/20220813trig/gn1/antikt4empflow/network.onnx


The pain points
● Experiment operates like a franchise

○ Many autonomous groups
○ (relatively) small central budget

● We’re light on “software engineers”
○ A good data-heavy shop is 1:1 engineer:researcher

■ We’re pretty much all researchers
○ Our engineers are often short tenure

● Machine learning software is ugly
○ Fast moving, with lots of dependencies

● ATLAS has one repository for trigger, reconstruction, simulation, and analysis
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More network exchange formats
https://www.khronos.org/nnef
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https://www.khronos.org/nnef


Room for collaboration
● Build a common minimal-dependency library
● Tools to interface with / examine ONNX models

○ We might even become contributors

● Better container infrastructure / training
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