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Most BSM searches are interpreted in terms of a small set of signal models in
the original publications.

Reinterpretation of the results in terms of other BSM models require the full
statistical model. = Computationally very expensive and not always available.

Alternatives:

* Calculate limits with single bin signal regions. Only total event rate is
needed and sighal contamination in the CRs is ignored.
Drawbacks: underestimates the true exclusion power and less robust
against statistical fluctuations.

* In this talk: Use a reasonable to
reduce computational cost retaining the use of multi-binned SR bins.



Current CheckMATE version bases test on the SR with the largest
expected exclusion potential. We use only a fraction of the available
data which could cause a loss of sensitivity.

Our goal is to in the CheckMATE
framework.

We build a simplified statistical model based on the CheckMATE output
and make the hypothesis test within the PYHF environment.



We build the simplified likelihood following the prescription in
ATL-PHYS-PUB-2021-038:

* "In the simplified likelihood introduced herein, the background model is approximated with a
, representing the total SM background rate in the different analysis
channels. "

* "The pre-fit sample rate of the total background sample is set to the total post-fit background rate
obtained in the background-only fit in the full likelihood"

» "...the complete set of nuisance parameters in the original full likelihood is reduced to a single
constrained parameter... . Itis constrained by a Gaussian G(a=0/a, o = 1) and is correlated over
all bins in each channel”



PYHF implementation

APl to implement HistFactory statistical models in a python framework.

Lf

differentiable
Pikelihoods

e Simplified model in JSON format including:

* Single channel including signal and background samples.
Signal modifiers: statistical error (from CheckMATE output), luminosity error (optional
input), systematics (optional input).
Background modifiers: fully correlated background error.
* Parameter of interest : u (signal strength of the model)
* Hypothesis test:
Option to choose between asymptotic calculator or toy based.

We compared the results of this implementation with the results obtained in with an
implementation on HistFitter finding equivalent results.



Results format:

L Observed p-value of the hypothesis u=1

Observed CLs for u = 1: 3.120639681359277e-06

Expected CLs band for p = 1: [1.64443160871263e-07, 5.531920389481112e-06,
0.00015700059417103602, 0.0032331969351591075, 0.03843474510134974]

— 2-sigma band for the Expected p-value
assuming pu=1

Upper limit (obs): u=0.2255
E)7(ected 2-sigma band = [0.2134,0.2960,0.4337,0.6556,0.9610]

/

Observed upper limit over signal strength
(point is excluded if p<1)
The point tested in this case is excluded!

2 sigma band of the expected limit over the
signal strength for the point tested.



Validation

e Several ATLAS searches featuring multibinned analysis were recasted:

Squarks and gluinos to jets and missing transverse momentum. JHep 02 (2021)
143 (2010.14293)

Staus to 2 hadronic t-leptons and missing transverse momentum. Phys. Rev. D 101
(2020) 032009 (1911.06660)

Sbottom to higgs bosons, b-jets and missing transverse momentum. Hep 12 (2019)
060 (1908.03122)

* Morein preparation...



Search for squarks and gluinos in final states with

jets and missing transverse momentum using
139 fb~1 of v/s =13 TeV p p collision data with the
ATLAS detector
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Search for direct stau production in events with two
hadronic 7-leptons in Vs = 13 TeV pp collisions
with the ATLAS detector

The ATLAS Collaboration
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Search for bottom-squark pair production with the
ATLAS detector in final states containing Higgs

bosons, b-jets and missing transverse momentum
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The ATLAS Collaboration

3 Sets of signal regions (not orthogonal
between them!). SRA and SRC binned.

Orthogonal binning within each set in terms
of meff and "S" (object-based MET -significance)

For each point, we calculate the expected
upper limit based on each of the three SR-
sets and we select the observed limit
obtained from this SR-set.

e Simulation of sbottom + to 2 additional partons

with MadGraph5_aMC@NLO v3.4.1
* PYTHIA v8.306 for parton showering and hadronization.

e MLM merging scheme.
* NNPDF2.3LO pdf set was used.
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Summary

* The use of simplifications of statistical models of the LHC searches
facilitates the use of multibined analysis in recasted analysis.

* Multibinned analysis utilizing the additional information with respect
to best SR approach lead to more robust results and generally stricter
limits.

A PYHF based implementation of this approach is in preparation for
CheckMATE

e Several ATLAS searches featuring multibined analysis have been
recasted with good agreement with ATLAS results.
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