

Reproducing a CMS higgsino search from public data

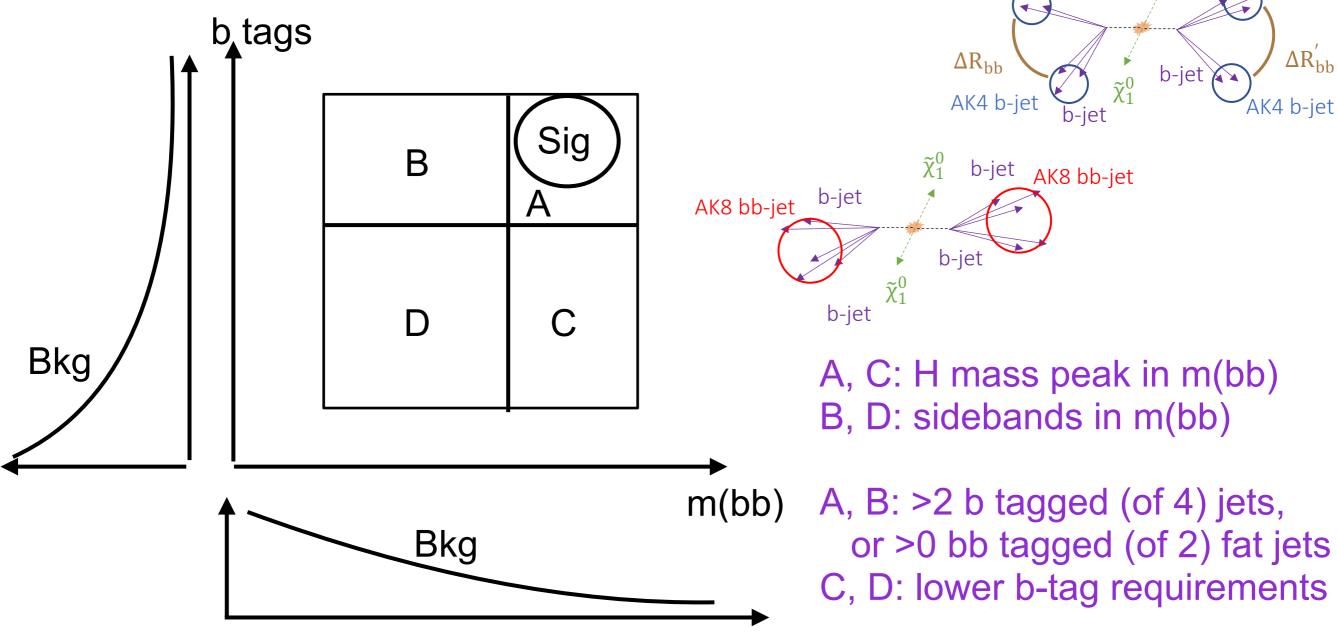
Approaches to extraction of limits from the data in search experiments

- Focus here on CMS-SUS-20-004 [1]: Higgsino decaying to LSP+H(bb)
 - The likelihood is built and analyzed with the CMS likelihood builder
- Question: how well can one reproduce these results from the information published in HEPData?
- Simplified Likelihood approaches
- Results, comparisons
- Application to alternate models

CMS-SUS-20-004: $pp \to \widetilde{\chi}_3^0 \widetilde{\chi}_2^0 \to H(bb)H(bb)\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$

Resolved (4 b jets) & boosted (2 fat bb jets) signatures

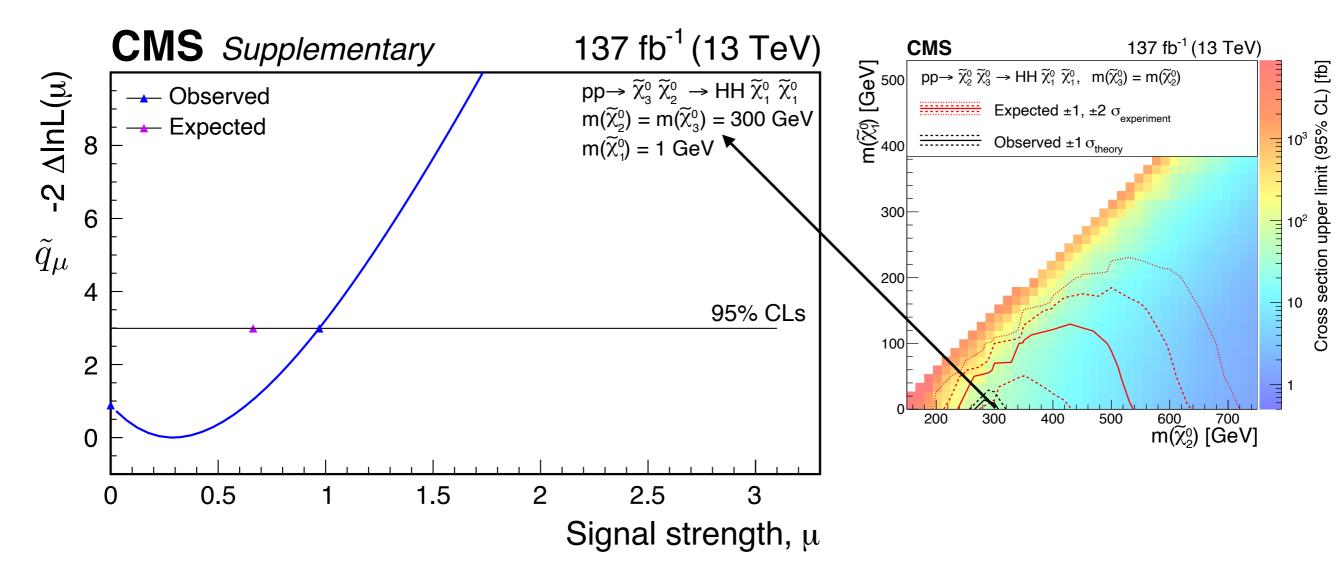
Data-driven background prediction, "ABCD" b-jet AK4 b-jet b-jet b_ktags ΔR_{bb} b-jet



or >0 bb tagged (of 2) fat jets

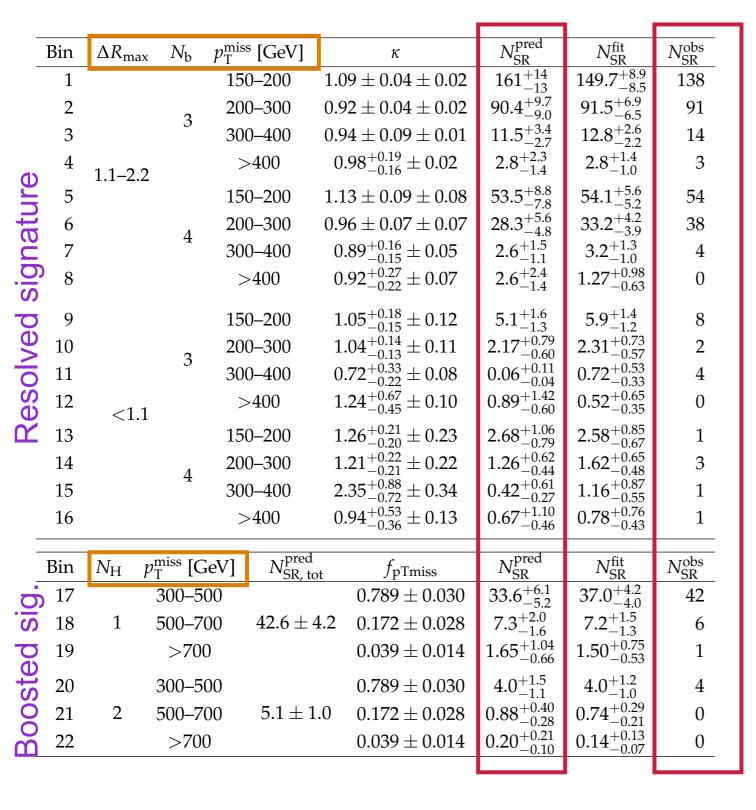
- Predicted N_{bkg} in $A = N_B (N_C / N_D)$
- All N's are event counts (some small), so Poisson distributed

Full profile likelihood vs μ

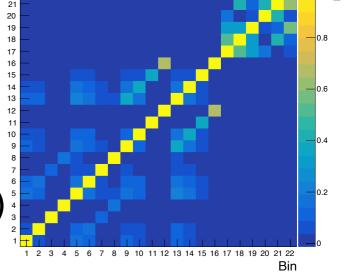


- blue triangles: significance, 95% CLs limit
 - μ < 1 @ 95% CLs \Rightarrow this (300, 1) point is (barely) excluded
- purple triangle: expected limit

From HEPData



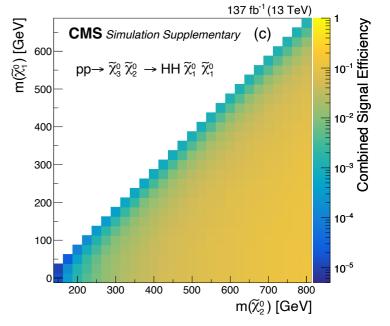
covariance (correlation shown here)



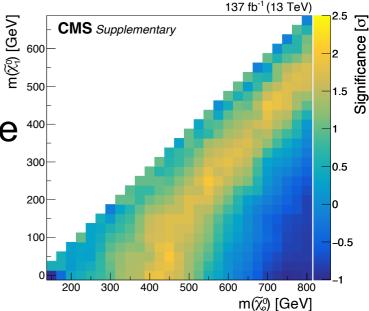
137 fb⁻¹ (13 TeV)

CMS Supplementary

efficiency (by bin available)

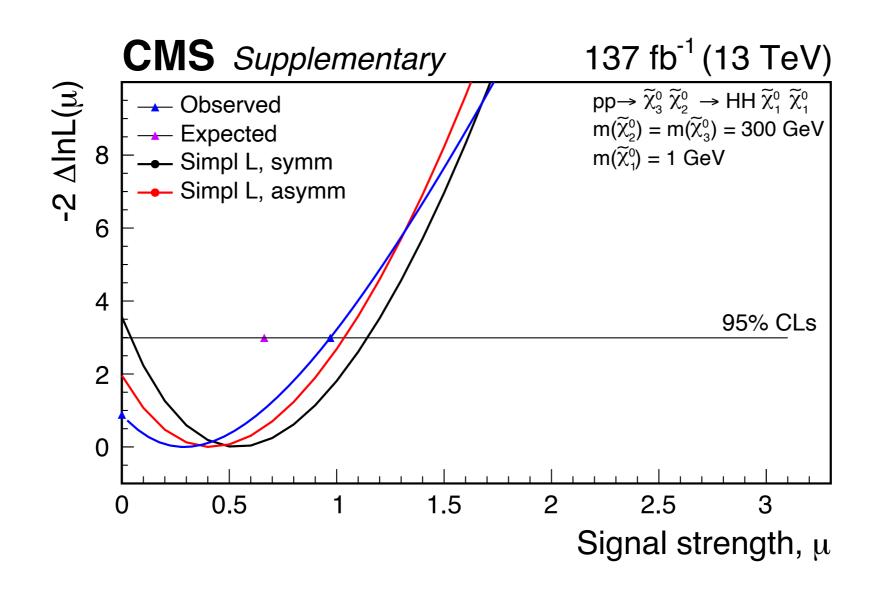


significance 400



https://www.hepdata.net/record/ins2009652

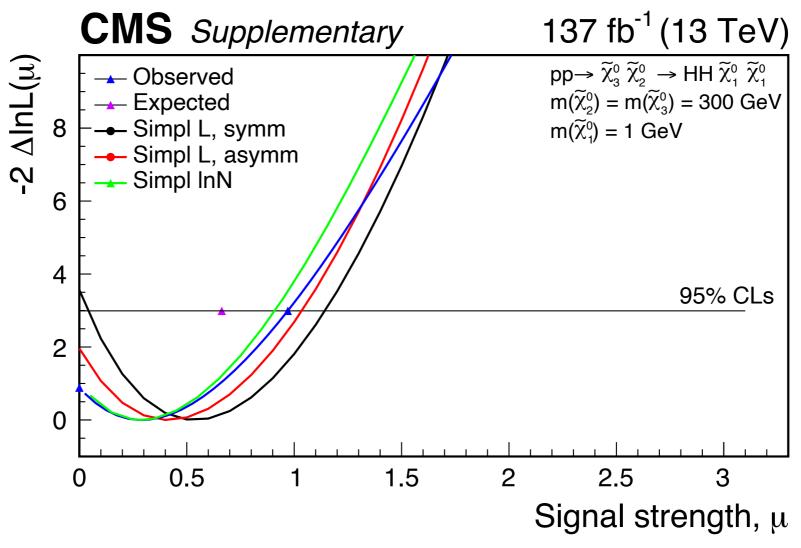
Compare simplified (SL) with full likelihood



- SL treats Nobs as Poisson, Nbkg as (asymmetric) Gaussian
 - Asymmetry term computed from bifurcated Gaussian bkg pdf.
 - Doesn't fully account for Poisson fluctuations of low-stats CR yields
- Including the asymmetry improves the agreement.

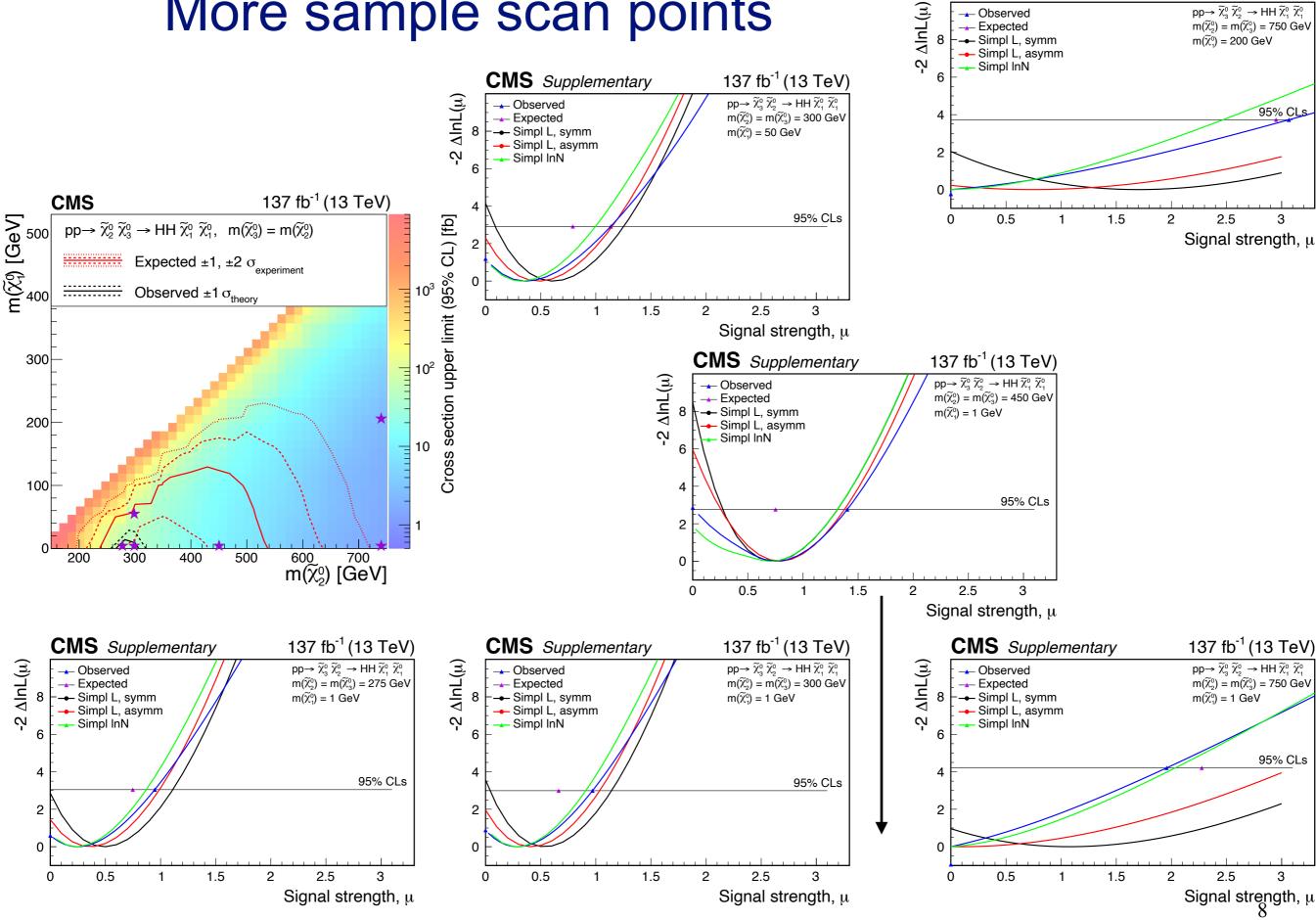
Alternate SL: bkg uncertainties as log-normal

- Here implemented with the CMS likelihood builder.
- Published bkg central values, uncertainties as asymmetric log-normal nuisances.
- Multiply by correlation matrix for bin-bin correlations.



- Accurately fits the minimum and significance.
 - Again, doesn't fully account for Poisson fluctuations of low-stats CR yields.

More sample scan points



137 fb⁻¹ (13 TeV)

CMS Supplementary

Thoughts on application to other models

- The b quark content would have to be the same, else sorting of the model into 3b, 4b, or 1bb, 2bb bins would be impossible
 - □ ⇒ (8 topology/kinematical bins for resolved + 3 for boosted)
 - * 2 flavor bins
- From generator level information, sort the model events into
 - □ resolved/boosted, with cuts on **△**R between the H daughter quarks
 - □ p_Tmiss, **∆**R_{max} bins
- The bin efficiency is normalized to total cross section σ^0 of the reference model, so for a trial model m, need to scale the prediction by $S_i^m = \frac{\sigma_i^m/\sigma^m}{\sigma^0/\sigma^0}$
- Then the predicted signal yield for topology/kinematical bin i and flavor bin j of model m is

$$N_{i,j}^{\text{sig}} = S_i^m \epsilon_{i,j} \mathcal{B}^2(H \to b\bar{b}) \sigma^m \mathcal{L}, \qquad i \subset 1 - 11, \ j \subset 1 - 2$$

Summary

- CMS search papers are typically accompanied by digitized results, with supplementary data, in a HEPData record.
- Here we exercised the use of HEPData tables from one of these searches to reproduce the results by approximate methods.
- The results agree reasonably well.
- We've sketched the steps to test other phenomenological models.

Additional material

Full likelihood

- Built from
 - Poisson pdfs for Nobs; in all A, B, C, D regions
 - □ Constraints $N^{bkg} = A = \kappa B C / D$
 - □ Correction κ (~1) from MC with Gaussian uncertainty pdfs
 - Log-normal pdfs for other nuisances (calibration corrections)
- The expected yields Nexpi in all ABCD regions are given by
 - \blacksquare N^{exp}_i = N^{bkg}_i + μ N^{sig}_{i,} where μ is the signal strength
 - Accounts for signal contamination in control regions
- The criterion for 95% CL is that CLs = CL_{s+b} / CL_b = 0.05
 - \Box CL_{s+b} = 1 $\Phi(\sqrt{\tilde{q}_{\mu}})$, where \tilde{q}_{μ} is the profile likelihood test statistic:

$$\tilde{q}_{\mu} = -2 \ln \frac{\mathcal{L}(data|\mu, \hat{\theta}_{\mu})}{\mathcal{L}(data|\hat{\mu}, \hat{\theta})}, \quad 0 \leq \hat{\mu} \leq \mu$$

, and Φ is the normal cumulative

- density function.
- CL_b measured with the Asimov data set (Nobs set to Nexpected)
- Details in <u>CMS-NOTE-2011/005</u> (ATLAS/CMS)

Simplified Likelihood Framework (SL)

The predicted yield in bin i is

$$N_i^{\text{pred}} \equiv N_i^{\text{bkg}} + \mu N_i^{\text{sig}},$$
$$N_i^{\text{bkg}} = a_i + b_i \theta_i + c_i \theta_i^2$$

- a_i is the central value of the bkg prediction
- ullet θ_i is a nuisance parameter drawn from a unit Gaussian
- ullet b_i is the effective sigma of the bkg uncertainty, $\sqrt{V_{ii}}$ in the limit of symmetric uncertainties
- c_i gives the asymmetry of the bkg uncertainty
- The simplified likelihood is

$$L_S(\mu, \theta) \propto \prod_i \text{Pois}(N_i^{\text{obs}}|N_i^{\text{pred}}(\mu, \theta)) \exp(-\frac{1}{2}\theta^{\mathsf{T}}\rho^{-1}\theta)$$

- ightharpoonup where ho
 ightharpoonup correlation matrix for symmetric uncertainties
- A. Buckley et al., CMS Note-2017/001
 A. Buckley et al., JHEP 2019, 64 (2019)
 gitLab

SL: asymmetric bkg uncertainties

- The covariance matrix gives second moments, i.e., sigma², on the diagonal, and correlations, on off-diagonal elements
- To incorporate asymmetric uncertainties, SL uses the diagonal elements of the 3rd moment m₃ of the background nuisances.
- For CMS-SUS-20-004, we compute m_3 from a bifurcated Gaussian using the asymmetric uncertainties $\sigma_{1,2}$:

$$m_3 = \frac{2}{\sigma_1 + \sigma_2} \left[\sigma_1 \int_{-\infty}^0 x^3 G(x; 0, \sigma_1) dx + \sigma_2 \int_0^{+\infty} x^3 G(x; 0, \sigma_2) dx \right]$$

Chisquare method

$$\chi^2 = \Delta_i V_{ij}^{-1} \Delta_j$$

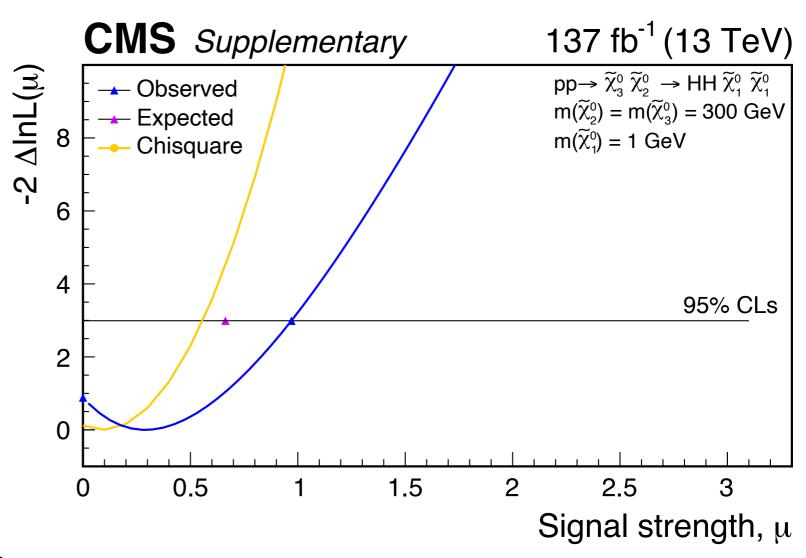
$$\Delta_i \equiv N_i^{\text{obs}} - N_i^{\text{pred}},$$

$$N_i^{\text{pred}} \equiv N_i^{\text{bkg}} + \mu N_i^{\text{sig}},$$

$$N_i^{\text{sig}} = \epsilon_i \mathcal{B}^2 (H \to b\bar{b}) \sigma \mathcal{L}$$

$$V = V^{\text{bkg}} + \text{diag}(N^{\text{obs}})$$

underestimates μ_0 and high-side uncertainty



Limitations

- All errors Gaussian
- Any tension between predicted bkg and observation is underestimated by artificial uncertainty on the observed yield.
 - E.g., the bin 11 contribution before squaring is (very nearly) (4 0)/
 √4, which is 2 sigma, vs the detailed study giving 3.3 sigma local significance.