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ML usage in CMS: physics objects
• Widely used for physics objects identification (or regression) — ex: boosted jet tagging


- applied to AK jets with R=0.8 — default in CMS


- identification of jets arising from hadronic decay of boosted W/Z/H/t — common signature of 
large variety of BSM models


• Latest model (ParticleNet) uses point-cloud representation of the particles inside the jet 
and graph NN architecture for multi-classes classification


- used by several CMS Run 2 analyses [ex: Search for non-res HH→4b, PRL 129 (2022) 081802 or 
VH→cc search, HIG-21-008]
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Higgs Z W Top

bb cc 4q bb cc qq qq qqb

ParticleNet ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

ParticleNet-MD ✔ ✔ ✔ ✔

Phys. Rev. D 101, 056019 (2020)

For details on the architecture see:

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.129.081802
https://cms-results.web.cern.ch/cms-results/public-results/publications/HIG-21-008/index.html
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.101.056019


ML usage in CMS: analyses
• Standard usage in many analyses is to build a signal versus background classifier  

(could also target multiple backgrounds at once)
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Ex: Search for dim-6 EFT in boosted ttH and ttZ final states


- DNN used to separate ttZ/ttH from tt+jets

- 50 input variables, 2 dense layers, 3 output nodes [one for 

signals and two for backgrounds]

- Signal extraction performed over multiple bins of three 

discriminant observables: pT, jet softdrop mass and DNN score 

CMS-TOP-21-003
Submitted to PRD

http://cms-results.web.cern.ch/cms-results/public-results/publications/TOP-21-003/


ML models preservation in CMS
• For centrally-supported ML models (i.e. for physics objects) the full model exists in the 

central CMS software release used to produce the datasets and MC samples used by the 
analyses


• CMSSW supports several model implementations — ex: ParticleNet uses ONNX [1,2]
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More details in our CMS ML living documentation at:

https://cms-ml.github.io/documentation/ 


[fully public]

https://github.com/cms-sw/cmssw/blob/master/RecoBTag/ONNXRuntime/plugins/BoostedJetONNXJetTagsProducer.cc
https://github.com/cms-data/RecoBTag-Combined/tree/master/DeepBoostedJet/V02/full
https://cms-ml.github.io/documentation/


ML models preservation in CMS
• For centrally-supported ML models (i.e. for physics objects) the full model exists in the 

central CMS software release used to produce the datasets and MC samples used by the 
analyses


• CMSSW supports several model implementations — ex: ParticleNet uses ONNX [1,2]


• While preservation is handled properly  
with github repositories fully public, 
the accessibility of the useful information 
is currently very limited 


• Ways to improve this could be:


1) publish trained model in ONNX format on  
Zenodo with the required documentation


2) publish ML model efficiencies


• Option 2) is already in place but not structured  
and most of the time not well accessible


• Option 1) is something new that should be pursed but there are caveats
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https://github.com/cms-sw/cmssw/blob/master/RecoBTag/ONNXRuntime/plugins/BoostedJetONNXJetTagsProducer.cc
https://github.com/cms-data/RecoBTag-Combined/tree/master/DeepBoostedJet/V02/full


ML models reusability
• Publishing the trained ML model with dedicated documentation can be done and would 

be certainly important for preservation motives


- significant effort still needed that people have to be willing to take


• The question remain on the reusability of inference-only information, i.e. without the 
associated training code and data


- training code typically lives in someone’s (the developer) repository


- data are only made available to the public as CMS Open Data after several years [together 
with the associated CMSSW ML inference code and weights]


• Training code might not be needed if documentation is clear and descriptive enough


- thinking in particular about input data preprocessing — however ONNX enables to store 
more than the ML model itself


• While applying a ML model pre-trained on CMS-reconstructed data on privately 
produced signal simulation (ex, with Delphes) might be less trivial


- the outside user would have to also fully simulate the backgrounds and retrain from scratch
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ML models reusability
• Publishing the ML model efficiency for physics objects might be more straightforward for 

reusability although not fully structured in CMS


• Taking again the ParticleNet example: if you know where to look you will find the CMS 
Detector Note in CDS with some efficiency plots


• And even if you know where to look it does not necessarily mean that what you need is 
contained in that document


- ex, the ParticleNet efficiency for H→4q are not there, the efficiency for the jet mass cut is 
included in the efficiency and the exact working point for a specific analysis might not be 
indicated
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CMS-DP-2020-002

http://cds.cern.ch/record/2707946/files/DP2020_002.pdf


ML models reusability
• Publishing the ML model efficiency for physics objects might be more straightforward for 

reusability although not fully structured in CMS


• A better example from the DeepTau case: particle-based CNN to discriminate real 𝜏h 
decays from QCD jets


- technical publication in JINST with associated HEP Data of ROC curves and maps of 
efficiency and mistag rates versus pT and η
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https://iopscience.iop.org/article/10.1088/1748-0221/17/07/P07023/pdf
https://www.hepdata.net/record/ins2016054


ML models reusability
• Publishing the ML model efficiency for physics objects might be more straightforward for 

reusability although not fully structured in CMS


• See also an interesting example from a mono-jet dark matter search in CMS EXO


- case in CMS for a general effort (i.e. not strictly ML related) to aid re-interpretation of analysis 
through HEP data and MADANALYSIS


- includes also generator-level matched efficiencies in HEP data for the ML-based boosted jet 
tagging model
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http://cms-results.web.cern.ch/cms-results/public-results/publications/EXO-20-004/
https://www.hepdata.net/record/126782


ML models reusability: analyses
• For the standard usage in analyses most of what discussed applies in a similar way


• However, this is even less trivial as custom (not CMS central) ML models are typically 
developed for these cases


• At the same time, most cases use the DNN score in the likelihood such that such 
application can be handled in a separate way


• There were proposals of publishing the likelihood as DNN weights → see separate talk 
from the CMS statistics committee


• No standard usage include unsupervised learning but given that such effort, although 
rapidly growing, just started in LHC collaborations it is hard to have a full picture in this 
exact moment


- certainly we’ll need to think about!
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https://indico.cern.ch/event/1197680/contributions/5160806/
https://indico.cern.ch/event/1197680/contributions/5160806/


Future usage of ML models
• To cope with growing computing demands a large effort being put to replace event 

generation and GEANT4 simulation with surrogate ML-based models


• Different generative models being explored:


- Variational Autoencoder


- Generative Adversarial Network


- Normalizing Flows


•And different data representations:


- images and point cloud


•In CMS nothing in production yet 
(ATLAS already deploys GANs for  
Run 3 FastSim)


•Opportunities to increase data reusability by publishing  
full or partial detector simulation as compact ML models
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Source

See recent mini-workshop by CERN IT on 
“Foundation models and fast detector simulation”

https://twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputingResults
https://indico.cern.ch/event/1220966/


Conclusions
• With the rapidly increasing usage of ML models for physics analyses it is the right time to 

bring the discussion about their preservation and reusability as a priority in LHC 
Collaborations


• We can take the problem step by step starting from the most standard usage of ML


• CMS has ways implemented although not fully optimal in terms of accessibility nor fully 
structured throughout the collaboration


• As substantial effort would be needed to improve it, feedbacks from the users would be 
beneficial to fully understand how to prioritise and channel the efforts!


• Can take inspiration from independent efforts on structuring the principles that a reusable 
AI model should follow


- see for example the FAIR for AI project (Findable, Accessible, Interoperable, and Reusable)
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https://arxiv.org/abs/2210.08973

