Detecting Heavy Neutral Leptons with DUNE

Raphaël van Laak

EPFL (Leiden University)

January 17, 2023

Outline

- Heavy Neutral Leptons
- Deep Underground Neutrino Experiment
- Detector Sensitivity

Heavy Neutral Leptons

Heavy Neutral Leptons

- Heavy Neutral Leptons (HNLs), also called Sterile Neutrinos, are new particles that are added to the Standard Model (SM) to solve three Beyond the Standard Model problems (Abazajian et al. [1204.5379]).
 - Neutrino masses and oscillations,
 - Dark Matter,

Heavy Neutral Leptons

- Baryon asymmetry in the Universe.
- HNLs are massive Majorana particles with interactions similar to the SM neutrino, but suppressed by a mixing angle U_{α} , with $\alpha \in \{e, \mu, \tau\}.$
- This mixing angle describes with which lepton flavour the HNL can interact and with what strength.

HNLs Parameter Space

- In constraining the HNL properties, some regions in $U_{\alpha}^2 m_N$ parameter space of HNLs are excluded by;
 - previous experiments that were sensitive to specific regions of parameter space but did not detect any HNLs,
 - constraints from Big Bang Nucleosynthesis (BBN) and the observed neutrino masses.

Credit: Data from Boiarska et al. [2107.14685]

Exploring HNL Parameter Space

- Most of unexplored parameter space is at $m_N > 0.5 \, {\rm GeV}$
- Unconstrained regions of parameter space are probed by future accelerator experiments.
- In these experiments mesons are produced that could then decay into HNLs.
- HNLs can then decay inside detectors and the decay products leave behind tracks that can be observed and characterised as HNL decay events.

DUNE •0000

DUNE

- One of these experiments is the Deep Underground Neutrino Experiment (DUNE).
- DUNE is an experiment under construction at the Long-Baseline Neutrino Fascility (LBNF) at Fermilab and the Sanford Underground Research Facility (SURF), separated by 1300 km.
- The main goal of my thesis is to explore if the number of observed HNLs increases if the currently planned detector would be positioned elsewhere.

Credit: dunescience.org

DUNE

- DUNE's primary science program is the study of (SM) neutrino physics.
- This is done by shooting $1.1 \cdot 10^{21} \, \mathrm{PoT/yr}$ protons of $120 \, \mathrm{GeV}$ at a target producing a large quantity of secondary mesons.
- These mesons decay and produce neutrinos, which are then observed at a Near Detector (Fermilab) and a Far Detector (SURF).
- Amongst other objectives, a secondary science program consists of the search for new particles, including HNLs, which the Near Detector can observe.

Near Site Overview

 The Near Site at Fermilab consists of the proton beam, the Target Hall which houses the target, a Decay Pipe, an Absorber Hall and the Near Detector.

Credit: lbnf-dune.fnal.gov

HNL Detector

- Beyond the Near Detector, other locations may be suitable for HNL detection, with possibly better sensitivity.
 - Target Hall (off-axis)
 - Absorber Hall (on-axis)

Credit: lbnf-dune.fnal.gov

Detector Sensitivity

HNL Distributions

- The most important production channel for $m_{\rm N} > 0.5\,{\rm GeV}$ HNLs is $D_{\mathfrak{s}}^+ \to I^+ N$.
- I use Monte Carlo simulations to draw the distribution of HNL momentum produced by $D_s^+ \rightarrow I^+ N$.
- Because of the high centre of mass energy of the initial protontarget reaction, the D_s mesons and high mass HNLs are strongly confined to the beam axis.
- Low mass HNLs have more freedom to deviate.
- Off- (on)-axis detectors are more sensitive to low (high) mass HNIs.

Iso-Contours

- Confidence intervals for 90% probability of detecting a single HNL without any background.
- We take a $5\,\mathrm{m} \times 5\,\mathrm{m} \times 5\,\mathrm{m}$ detector for reference.
- We consider pure electron mixing, i.e. $U_e^2 \neq 0, U_{\mu,\tau}^2 = 0$.

Conclusion

- The Target Hall proves to be a very poor choice for a detector, losing a lot of sensitivity to high mass HNLs.
- The Absorber Hall leads to more HNL events than the Near Detector due to its location closer to the target.
- On the other hand, the Absorber Hall does have a much higher amount of background than the Near Detector.
- However, a more detailed analysis of the effect of muon background is recommended to fully compare the Absorber Hall and the Near Detector.

Backup Slides

Backup Slides

HNL Production (Electron- and Muon-Mixing)

- HNLs are most commonly produced by meson decay.
- D mesons are heavy enough to produce $m_N > 0.5 \, \mathrm{GeV}$ HNLs, but not too heavy s.t. they are difficult to produce.
- The most important HNL production channel for electron- and muon-mixing is $D_s^- \to Nl^-$, with $l \in \{e, \mu\}$ (Bondarenko et al. [1805.08567]).

Figure for electron-mixing.

HNL Production (Tau-Mixing)

- Since $m_{ au} \approx m_D$, production from D meson decay through taumixing only leads to $\mathcal{O}(\mathrm{MeV})$ HNLs.
- For tau-mixing, HNLs are most efficiently produced through $D_s^- \to \tau^- \nu_{\tau}$ and subsequent $\tau \to N$ (Boiarska et al. [2107.14685]).
- Relevant channels are $au^- o Nl_{lpha}^- \overline{
 u}_{lpha}, N\pi^-, N
 ho^-$

HNL decay

- HNLs can decay through the charged current (CC) and the neutral current (NC).
- CC decay leads to a charged lepton, plus a U fermion and D antifermion pair $(U = \nu_e, \nu_\mu, \nu_\tau, \{u, c, t\})$ and $D = e, \mu, \tau, \{d, s, b\}$.
- NC leads to a neutrino and any fermion-antifermion pair.
- Charged conjugate channels are also allowed due to the HNL Majorana nature.

HNL Decay

• All decay channels are visible, except for $N \to 3\nu$.

Assuming mixing with $U_e^2 = U_u^2 = U_\tau^2$.

Geometrical Acceptance

$$\frac{\mathrm{d}^2 N}{\mathrm{d} x_{\rm F} \mathrm{d} \rho_{\rm T}^2} \propto (1 - |x_{\rm F}|)^{6.1} \mathrm{e}^{-1.08 \rho_{\rm T}^2 \, \mathrm{GeV}^{-2}}.$$
 (1)

• The number of HNL events depends on the number of HNLs produced $N_{
m prod}$ and the probability that a single HNL is detected $P_{
m det}$

$$N_{\text{events}} = N_{\text{prod}} P_{\text{det}}.$$
 (2)

• The probability of detection depends on the probability that an HNL decays inside the detector, i.e. at a point between entry $(I_{\rm ent})$ and exit $(I_{\rm exi})$ of the detector

$$P_{
m det} \propto \left[\exp \left(- \frac{I_{
m ent}}{I_{
m dec}} \right) - \exp \left(- \frac{I_{
m exi}}{I_{
m dec}} \right) \right].$$
 (3)

- Iso-contours of regions in $U_{\alpha}^2-m_N$ parameter space are found by taking two limits;
 - a lower bound is given by $I_{\rm dec} \gg I_{\rm ent}, I_{\rm exi}$; long living HNLs
 - an upper bound is given by $I_{\rm dec} \ll I_{\rm det}$, $I_{\rm ent}$; short living HNLs.

Target Hall

- The Target Chase is a tunnel inside the Target Hall, containing the target and horns that help focus charged particles.
- A detector could be placed in the Target Hall, but outside the Target Chase to minimise background.

Credit: Strait et al. [1601.05823]

Absorber Hall

- The Absorber Hall at the end of the Decay Pipe consists of a hadron absorber upstream, a muon monitor and muon shielding downstream.
- A detector could be placed between the hadron absorber and the muon monitor.

Credit: https://indico.fnal.gov/event/22165/

Sensitivity Bounds

The number of events is

$$\begin{split} \textit{N}_{\rm events} = & \textit{N}_{\rm D_s} {\rm BR}_{\rm D_s \sim N} \epsilon_{\rm geom} {\rm BR}_{\rm vis} \\ & \times \left[\exp \left(-\frac{\textit{I}_{\rm ent}}{\textit{I}_{\rm dec}} \right) - \exp \left(-\frac{\textit{I}_{\rm exi}}{\textit{I}_{\rm dec}} \right) \right] \end{split} \tag{4}$$

• For $I_{\rm dec} \gg I_{\rm det}$, $I_{\rm ent}$

$$N_{\rm events} = N_{\rm D_s} \widetilde{\rm BR}_{\rm D_s \sim N} BR_{\rm vis} \epsilon_{\rm geom} \frac{\langle I_{\rm det} \rangle}{\langle v \gamma \tilde{\tau} \rangle} U^4$$
 (5)

• For $I_{\rm dec} \ll I_{\rm det}$, $I_{\rm ent}$

$$N_{\text{events}} = N_{\text{D}_{\text{s}}} \widetilde{\text{BR}}_{\text{D}_{\text{s}} \sim N} \text{BR}_{\text{vis}} \epsilon_{\text{geom}} U^2 \exp\left(-U^2 \frac{\langle I_{\text{ent}} \rangle}{\langle V \gamma \tilde{\tau} \rangle}\right)$$
 (6)

Combinatorial Muon Background

- The channels that suffer from this background are $N \to \nu \mu^+ \mu^-$, and $N \to \mu^{\pm} \pi^{\mp}$, because $m_{\pi} \approx m_{\mu}$.
- Muons are produced from pion decay $\pi^+ \to \mu^+ + \nu_\mu$.
- Pions are (relatively) long lived, and so are effected by the horn focussing system.

Horn in neutrino mode: focussing positive particles and deflecting negative particles. Data from **DUNE** Collaboration.

Muon Background

- A pair of muons can form background if they are closer than the detector resolution ($\sim 1 \, \mathrm{cm}$, DUNE Collaboration [2103.13910]) to each other as they enter the detector.
- The number of muon pairs in the experiment is

$$N_{\mu\mu,\text{exp}} = N_{\mu\mu,\text{sim}} \left(\frac{N_{\mu,\text{exp}}}{N_{\mu,\text{sim}}}\right)^2 \frac{\Delta t_{\text{det}}}{T_{\text{exp}}}$$
 (7)

• With the detector time resolution $\Delta t = 20 \,\mathrm{ns}$ (DUNE Collaboration [2103.13910]) this leads to $\mathcal{O}(10^{18})$ events and $\mathcal{O}(10^{19})$ for the Near Detector and Absorber Hall respectively.

Ray-AABB Algorithm

- The ray-AABB algorithm is used to determine the number of HNLs that move towards the detector.
- It determines if a ray (HNL) passes through a box (detector), and also returns the time at which it enters and exits the box.

