

An Upgraded Preshower Detector for the FASER Experiment at the LHC

CHIARA MAGLIOCCA

CHIPP Winter School 2023 | Leukerbad, January 2023

The FASER Experiment at LHC

- ForwArd Search ExpeRiment
- Designed to search for light and weakly-interacting particles

Picture taken from symmetry magazine. Artwork by Sandbox Studio, Chicago with Ana Kova.

- Fluxes of high-energy SM particles are supressed
- Muons and neutrinos only exception

What Are We Able to Detect Well: Two Fermion Signal

Two Fermion signal

Two Photon signal

What Are We Willing to Detect: Two Photon Signal

Two Fermion signal

Two Photon signal

What Are We Willing to Detect: Two Photon Signal

Two Fermion signal

Physics with FASER

- FASER can probe Axion-Like-Particles (ALPs) model
- ALPs produced via the aWW coupling
- ALPs decay into a photon-pair within FASER volume

Two Photon signal

H. Abreu et al. "The FASER W-Si High Precision Preshower Technical Proposal" CERN-LHCC-2022-006; LHCC-P-023 https://cds.cern.ch/record/2803084

Preshower Detector Upgrade

- 6 detector planes
- Each detector plane: 1 X0 of tungsten + plane of monolithic Si-pixel sensors

H. Abreu et al. "The FASER W-Si High Precision Preshower Technical Proposal" CERN-LHCC-2022-006; LHCC-P-023 https://cds.cern.ch/record/2803084

Independent measurement of two very collimated photons at TeV energy scale

Monolithic ASIC Specifications

Main specifications						
Pixel Size	65 μ m side (hexagonal) $\sim 100~\mu$ m pitch					
Pixel dynamic range		0.5 ÷ 65 fC				
Cluster size		O(1000) pixels				
Readout time		< 200 μs				
Time resolution		< 300 ps				
Power consumption		< 150 mW/cm ²				

Selected technology: SG13G2, by IHP microelectronics.

ASIC design: University of Geneva, with support from KIT and CERN

- Monolithic ASIC in 130nm SiGe BiCMOS
- Design tailored for new FASER preshower
- Pixel size: hexagonal pixels with 65 μ m side ($\sim 100 \mu$ m pitch)
- Operates as an ultra-fast imaging chip (ultra-fast readout)

In between an imaging chip and a HEP detector

On-going Studies

Lab Test on the **Pre-production Chip**

- Chip response
- Readout
- Effects seen in simulation

PRESHOWER UPGRADE

Background Studies

- Muons
- Neutrinos' DIS

Variables to discriminate signal from background (angle of emission etc.)

Event Reconstruction

- Improving recontruction algorithm
- Introducing Machine Learning

Design of the New Chip

- Based on lab studies and tests
- To be submitted in May 2023

Summary and Conclusions

- New FASER preshower detector will **enable discrimination of photons** from LLPs decays
- Monolithic ASIC to distinguish clusters from two ultra-collimated high-energy electromagnetic showers
 - Hexagonal pixels with 65 μ m side ($\approx 100 \mu$ m pitch)
 - High dynamic range (from 0.5 fC to 65 fC)
 - Ultra-fast readout
- New pre-shower installed in '23/'24 winter break to take data during LHC Run3

Thank you!

Chiara Magliocca

chiara.magliocca@unige.ch

And if you want to know more:

H. Abreu et al. "The FASER W-Si High Precision Preshower Technical Proposal" CERN-LHCC-2022-006; LHCC-P-023 https://cds.cern.ch/record/2803084

BACKUP SLIDES

The FASER Experiment

Di-photon Signal Energy Distributions

New physics signature

 ν DIS with π^0

- Few mrad angular resolution
- Low occupancy
- Photon discrimination
- Combined information with tracking stations

Physics reasons for the new pre-shower

- Enables measurement:
 - Axion-Like Particles (ALP) produced via aWW coupling.
 - LLP with neutral pions in the final state.
 - Neutrino background suppression.
- Reinforces measurement:
 - Dark photon and other LLPs decaying into charged fermions.
 - LLP with charged and neutral pions in the final state.

The FASER Pre-shower Detector Upgrade

MAIN CHALLENGE: Resolve separate photon
 signatures before coarser calorimeter preshower
 needed

- Main goal of the upgraded preshower detector:
 - High granularity/high dynamic range for charge measurements
 - Pre-shower based on monolithic silicon pixel sensors
 - Discriminate TeV scale electromagnetic showers
 - Targeting data-taking in 2024/2025, during LHC Run3 and during HL-LHC

- Current preshower:
 - 2 layers of tungsten (1X0) + scintillating detectors

Di-Photon Reconstruction Efficiencies

Electromagnetic Shower Development

Total charge deposited at the peak of the electromagnetic shower

1 photon at E = 1TeV converting in the first layer

- The charge deposited increases while traversing more tungsten
- After 4 layer (= 4X0) the amount of charge deposited decreases —> the EM shower begins to die

Energy resolution

Only looking at the calorimeter (not using the preshower information)

Correcting with the Preshower energy

Calorimeter only

Energy resolution

For 500 GeV photons

The FASER Small Prototype Chip

F. Martinelli et al. 2021 *J. Inst.* **16** P12038 https://doi.org/10.1088/174 8-0221/16/12/P12038

Purpose

study **different level of INTEGRATION OF THE FRONT-END** electronics inside the sensitive area of the pixels

Final aim

identify the BEST FRONT-END CONFIGURATION for the preproduction chip of the FASER Pre-shower (submitted in June 2021)

200 μm x 50 μm PIXELS

shape to reduce the electric field at the edge of the sensitive areas

Tested in 2021 2 superpixels 16x4 pixels each

1.7 mm

Small Prototype: Front-end Configurations

F. Martinelli et al. 2021 *J. Inst.* **16** P12038 https://doi.org/10.1088/174 8-0221/16/12/P12038

5 Different front-end configurations

Configurations we would like to include

Backup configurations to still study electronics elements for the pre-production chip

From all electronics in pixel

All front-end system in Pixel

Driver in Pixel, discriminator outside

Everything in Pixel, featuring an inverting stage.

Only pre-amplifier in Pixel

All front-end system outside

To all the electronics outside the pixel

Small Prototype: Results and Comments

F. Martinelli et al. 2021 *J. Inst.* **16** P12038 https://doi.org/10.1088/174 8-0221/16/12/P12038

Configuration	σ_v [mV]	G_c [mV/fC]	<i>ENC</i> [e ⁻]	$\sigma_{V_{th}}$ [mV]
All f.e. outside pixel	4.2 ± 0.2	159 ± 1.0	165 ± 9	32.3
Only pre-amp. in pixel	2.5 ± 0.1	96.8 ± 0.5	161 ± 9	26.9
All f.e. in pixel, inv. stage	6.9 ± 0.5	179 ± 1.0	241 ± 19	30.8
Pre-amp. and driver in pixel	3.8 ± 0.2	133.7 ± 0.6	178 ± 9	23.4
All f.e. in pixel	5.4 ± 0.4	148 ± 1.0	228 ± 20	27.1

- The last two configurations represent a good compromise between comptacness and performance
- Configurations integrated in the pre-production chip

Sensor Cross Section

- Low resistivity heavily p-doped substrate as a support
- Negative high voltage applied to the substrate
- Triple well design
- Analog electronics inside the pixel
- Digital electronics outside the pixel
- Electronics inside the guard ring isolated from substrate using a deep n-well
- Digital electronics in a separate well
- Positive low voltage applied to pixels and electronics deep n-wells
- \approx 6% dead area in the pixel matrix

The Chip Architecture

Signal Routing and Crosstalk Suppression

- Signal routed in a shielded bus to minimize crosstalk between neighboring pixels
- Big signal produced by a 64 fC charge (in green)
- Signal induced in the neighbouring pixel (in red)
 - Crosstalk is supressed but not eliminated
 - The signal produced by a 1 fC charge is small but still bigger than the induced signal
 - Threshold set accordingly to 0.5 1 fC

Amplification Stage

- Since we want to measure high charges we convert the charge information to Time Over Threshold
- For different charges, if the charge increases also the TOT increases but not linearly (almost logarithmic relation)
- Saturation at 64 fC (intrinsic saturation of the pixel)

Memory Control and Analog Memories

 Current leakage even if the switch is opened. It takes 200 μs to degradate the memory value of 30 mV (= 1 bin of our ADC).
 After 200 μs we still measure something but we are less precise

