

MightyPix: A HV-CMOS Pixel Chip for LHCb's Mighty Tracker

Sigrid Scherl sigrid.scherl@kit.edu

LHCb Upgrade towards HL-LHC

- Upgrade II: $\mathcal{L}_{max} = 1.5 \times 10^{34} \text{cm}^{-2} \text{s}^{-1}$
- Increased readout speed of 40 MHz BX rate
- New software-only trigger

- New tracking stations
- Proposed hybrid tracker Mighty Tracker
- Composed of SciFi Tracker, Inner and Middle Tracker

Schematic side view of the Upgrade II LHCb detector. [1]

Mighty Tracker

Karlsruhe Institute of Technology

- SciFi Tracker: Scintillating fibres with SiPM readout
- Inner Tracker and Middle Tracker
 - Silicon sensors meet requirements of radiation hardness and granularity
 - Baseline technology: HV-CMOS pixel chip MightyPix
 - In total over 46000 silicon sensors to cover area of 18 m² (six layers with 3 m² each)

Schematic of one layer of the Mighty Tracker. [1]

Schedule from January 2022. [2]

2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
LS2	Run 3			LS3 (Long Shutdown 3)			Run 4			LS4			
			•										

Installation of SciFi

Replacements for SciFi, installation of Inner Tracker

Installation of Middle Tracker

MightyPix

- Based on knowledge from ATLASPix¹ and MuPix²
- Final design parameters and requirements:
 - Good granularity
 - Good time resolution
 - Lower power consumption
 - Radiation hard
 - Cooled to under 0°C
- First prototype: MightyPix1

Parameter	Required Value
Chip size	\sim 2 cm \times 2 cm (Limited by reticle size)
Pixel size	$\sim 150 \ \mu m \times 50 \ \mu m$
Time resolution	< 3 ns (Hit assigned to right BX)
Power consumption	$< 0.15 \mathrm{W/cm^2}$
NIEL ³	$6 \times 10^{14} \text{ 1 MeV } n_{eq}/\text{cm}^2$ (Includes safety factor of 2)
Cooling	< 0°C (Test beam studies)

¹ HV-CMOS pixel chip originally developed for CERN's ATLAS experiment

² HV-CMOS pixel chip for the Mu3e experiment at PSI

³ Non Ionising Energy Loss

MightyPix1: Overview

- Implemented in TSI 180 nm process
- Submitted in May 2022, came back in December
- Chip size: ~ 2 cm × 0.5 cm → full column length, ¼ width
- Pixel matrix: 29 columns, 320 rows
- Pixel: 165 μm × 55 μm with CMOS amplifier and CMOS comparator

The first prototype: MightyPix1

MightyPix1: Overview

- **Data format:** 2 × 32 bit words per hit
- Data output rate: 1.28 Gbit/s going to lpGBT
- **Digital interfaces:** Timing and Fast Control (TFC), Slow Control (I2C), configuration shift register (SR) interface
- External clocks: 40 MHz and 640 MHz coming from lpGBT
- Internal clocks: CML and CMOS PLL with 40 MHz reference clock
- Bias voltages: Integrated 10 bit voltage DACs, can be supplied externally

The first prototype: MightyPix1

Working principle:

- 1. Charge collected by pixel n-well
- 2. Converted to voltage signal by Charge Sensitive Amplifier
- 3. Analog voltage
 pulse shaped and
 converted to digital
 signal by comparator
- **4.** Hit information stored in hit buffer

Source: Ivan Perić

Working principle:

- 1. Charge collected by pixel n-well
- Converted to voltage signal by Charge Sensitive Amplifier
- 3. Analog voltage
 pulse shaped and
 converted to digital
 signal by comparator
- **4.** Hit information stored in hit buffer

Source: Ivan Perić

Working principle:

- 1. Charge collected by pixel n-well
- 2. Converted to voltage signal by **Charge Sensitive Amplifier**
- 3. Analog voltage pulse shaped and converted to digital signal by comparator
- 4. Hit information stored in hit buffer

Source: Ivan Perić

Working principle:

- 1. Charge collected by pixel n-well
- Converted to voltage signal by Charge Sensitive Amplifier
- 3. Analog voltage
 pulse shaped and
 converted to digital
 signal by comparator
- **4.** Hit information stored in hit buffer

Source: Ivan Perić

MightyPix1: Efficiency Simulation

- Can MightyPix handle the particle hit rate at LHCb?
- When a pixel is hit by a particle, it cannot detect another hit until first one is read out
- Quantify performance through

efficiency =
$$\frac{\text{detected events}}{\text{total events}}$$

- Expected rate in hottest region of Mighty Tracker: 1.7 hits per event¹ and chip² with additional 5% of clusters with two pixels
- Have MC simulated data based on old SciFi geometry
- Use model of MightyPix1 pixel matrix to check efficiency

¹ Within 25 ns window ² With size of 2 cm × 2 cm

Check how many hits are detected correctly for expected rate

Expected rate: 1.7 hits per 25 ns and 2 cm x 2 cm chip

Readout Speed	40 MHz
Rate	Expected
Simulated Hits	1166
Missing Hits	9
Efficiency	99.23%

How about for twice the expected amount of incoming particles?

Expected rate: 1.7 hits per 25 ns and 2 cm x 2 cm chip

Twice expected rate: 3.4 hits per 25 ns and 2 cm x 2 cm chip

Readout Speed	40 MHz			
Rate	Expected	2 x exp.		
Simulated Hits	1166	2322		
Missing Hits	9	105		
Efficiency	99.23%	95.48%		

- Analysis shows that missing particle hits fall into readout time of previous hit
 - → Increase readout speed

Expected rate: 1.7 hits per 25 ns and 2 cm x 2 cm chip
Twice expected rate: 3.4 hits per 25 ns and 2 cm x 2 cm chip

Readout Speed	40 N	ИHz	160 MHz		
Rate	Expected	2 x exp.	Expected	2 x exp.	
Simulated Hits	1166	2322	1166	2322	
Missing Hits	9	105	7	16	
Efficiency	99.23%	95.48%	99.40%	99.31%	

MightyPix1: Efficiency Simulation

Results:

- MightyPix can handle expected particle hit rate → efficiency over 99% in hottest region
- Missing particle hits fall into readout time of previous hit
- Could handle higher rate if readout speed is increased

Readout Speed	40 N	ИHz	160 MHz		
Rate	Expected	2 x exp.	Expected	2 x exp.	
Simulated Hits	1166	2322	1166	2322	
Missing Hits	9	105	7	16	
Efficiency	99.23%	95.48%	99.40%	99.31%	

Summary

- Proposed new tracker for LHCb: Mighty Tracker
 - → to be instrumented with 18 m² of silicon sensors
- First prototype MightyPix1
 - Submitted in May 2022, wafers are currently being diced
 - Compatible with LHCb readout
 - Able to handle highest expected hit rates
- What's next?
 - Measure MightyPix1
 - Design MightyPix2

References

- [1] CERN/LHCC 2021-012
 - (https://cds.cern.ch/record/2776420)
- [2] https://lhc-commissioning.web.cern.ch/schedule/LHC-long-term.htm (Accessed 23/9/2022)
- [3] CERN-LHCb-PUB-2022-003 (https://cds.cern.ch/record/2800986?In=en, publication pending)
- [4] H. Augustin et al. *The MuPix sensor for the Mu3e experiment.* Nucl. Instrum. Meth. A, 979:164441, 2020.
- [5] https://commons.wikimedia.org/wiki/File:Normal_Distribution_Sigma.svg

Backup

HV-CMOS

- Sensing element and readout circuit on same chip
- n-well/p-substrate diode acts as sensor
- Readout electronics isolated from high voltage by deep n-well
- High reverse bias creates thick depletion region between deep n-well and p-substrate
- Photons and ionising particles create electron/hole pairs, collected via drift

Working principle of HV-CMOS sensors.

Purpose of the Mighty Tracker

- Tracking stations T1 T3 downstream of the magnet
- Crucial to provide info on particle momenta with VELO and Upstream Tracker (UT)

Source: Fred Blanc, FCC Workshop, 12/11/2020

MightyPix1: TFC Signals

LHCb sends Timing and Fast Control (TFC) signals to all FE modules

- **BXReset:** Reset internal BXcounter to synchronise chips to same BX
- **Snapshot:** Capture number of received TFC commands (partially implem.)
- **FEReset:** Reset all modules except for TFC receiver, BXcounter and chip configuration registers
- **Cal:** Could be used to control an on-chip injection circuit (not yet implem.)
- **Sync:** Chip outputs sync pattern, configurable via configuration register

Pixel contains:

- Sensor diode
- Charge Sensitive Amplifier (CSA)
- Comparator
- Threshold tune DAC
- RAM for tune bits

Source: Ivan Perić

MightyPix1: Digital Readout

- Readout Control Unit (RCU) FSM
- Working principle:
 - Data busses discharged
 - Data loaded from highest active hit buffer to EoC buffer, go on to next one
 - Read data from EoC
 - For every hit 2 × 32 bit data words
 - Parallel scrambler analogue to VELOPix
 - Data sent into serializer tree

Why do we need a time resolution of < 3 ns?

MightyPix1: Time Walk and ToT

Time walk:

- Rise time same for all signals
- Difference in time at which threshold is crossed is called time walk
- Time walk ~ 2.5 ns for signals of 2500 e⁻ and 25000 e⁻

Time over Threshold:

- 1.5 μs to 2 μs
- Simulations show impact of resulting dead time negligible (See slides on Efficiency Simulation)

Schematic description of time walk, rise time, and time over threshold. Adapted from [4].

Striebig Source: Nicolas

MightyPix1: Efficiency Simulation

- Data: Simulated physics data from the University of Zurich LHCb group [3]
- Model: Parametrizable model of pixel matrix (RCU, hit buffer) structure, EoC)
- Comparison of input data with data seen at RCU
- Why do hits go missing?
 - Each pixel has one hit buffer
 - Columns scanned left to right and hit info loaded to EoC for each hit buffer
 - If readout takes too long and next hit already occurs before readout it will be missed

MightyPix1: Efficiency Simulation

Readout Speed		40 I	160 MHz			
Clusters	No	No	Yes	Yes	No	No
Rate	Expected ¹	Twice exp. ²	Expected ¹	Twice exp. ²	Expected ¹	Twice exp. ²
Simulated Hits	1166	2322	1223	2437	1166	2322
Missing Hits	9	105	9	122	7	16
Efficiency	99.23%	95.48%	99.26%	94.91%	99.40%	99.31%

¹Expected particle hit rate: 1.7 hits per 25 ns and 2 cm x 2 cm chip ²Twice the particle expected hit rate: 3.4 hits per 25 ns and 2 cm x 2 cm chip

