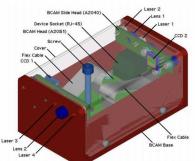
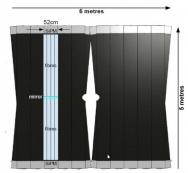
BCAMs study and $y_{CP} - y_{CP}^{K\pi}$ measurement at LHCb

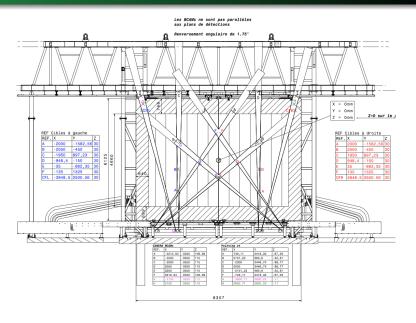
Kaminaris Dimitrios

Supervisor: Frédéric Blanc


École Polytechnique Fédérale de Lausanne

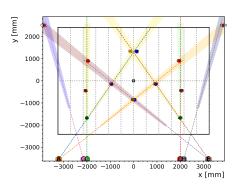
BCAM - Brandeis CCD Angle Monitor

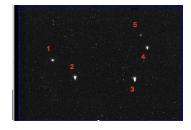

- Optical instrument designed to monitor the geometry of large structures
- Consists of one or two electronic cameras and one or two pairs of light sources
- The cameras use CCD image sensors and measure the bearing of light sources
- A BCAM is analyzing the relative position of the center of a light spot that is projected onto the CCD

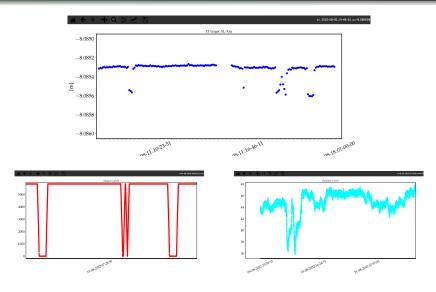

BCAMs on SciFi at LHCb

- We need constant monitoring of the SciFi surface geometry
- BCAMs and high index glass balls are placed on the SciFi
- Does the detector move depending on the behavior of magnet,temperature,...?
- We have 14 targets in 3 stations (T1,T2,T3) and 8 cameras per station

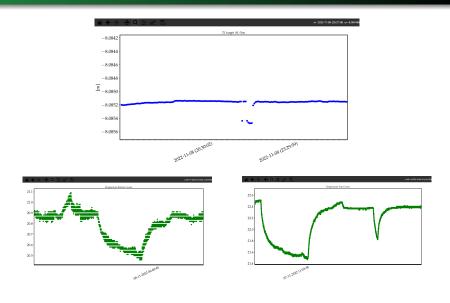
 The aim is to obtain 3D positions of targets with high precision




BCAMs on SciFi at LHCb


Calibration of Cameras

- Allows to build a common reference system and combine measurements of the same target by different cameras
- Dedicated data taking for each camera
- Targets measured with one BCAM at a time + the laser tracker
- Obtain orientation of each camera in the global system



Correlations between target movement and magnet state/humidity censor

Correlations between target movement and temperature censors

Measurement of charm mixing parameter $y_{CP}-y_{CP}^{K\pi}$ using two-body D^0 meson decays

- Neutral charm mesons change their flavour and turn into their antimeson counterpart $(D^0 \bar{D}^0 \text{ mixing})$
- ullet $D^0 ar{D}^0$ oscillations described by the two parameters

$$x_{12} = 2[M_{12}/\Gamma]$$
 $y_{12} = [\Gamma_{12}/\Gamma]$

- The non-zero value of y_{12} implies that the time-dependent decay rate of Cabibbo suppressed $D^0 \longrightarrow f$ decays is described by an exponential function with an effective decay width $\hat{\Gamma}$ that differs from Γ
- The departure from unity of the ratio of the effective decay widths of $D^0 \longrightarrow \pi^-\pi^+$ and $D^0 \longrightarrow K^-K^+$ decays over that of $D^0 \longrightarrow K^-\pi^+$ decays is measured via

$$y_{CP}^{f} = \frac{\hat{\Gamma}(D^{0} \longrightarrow f) + \hat{\Gamma}(\bar{D}^{0} \longrightarrow f)}{2\Gamma} - 1$$

Kaminaris Dimitrios

Measurement of charm mixing parameter $y_{CP} - y_{CP}^{K\pi}$ using two-body D^0 meson decays

• The above can be approximated as

$$y_{CP}^f = y_{12} cos \phi_f^{\Gamma}$$

where ϕ_f^Γ is the CP-violating phase difference of the interference between decay amplitudes with and without absorptive mixing

- ullet Any deviation of y_{CP}^f from y_{12} would be a sign of CP violation
- The measurement will be performed on Run3 data
- Current work: Improve the $D^0 \longrightarrow hh$ trigger lines
- Goal is to incorporate the kinematic matching procedure, performed in the previous measurement¹, directly to the trigger line

Kaminaris Dimitrios

9 / 10

¹https://arxiv.org/abs/2202.09106

Thank you for your time and attention!