

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

BASE collaboration at CERN

BASE collaborators, Antiproton Decelerator, 2022

BASE Experimental Area, 2023

Motivation (1)

- An upgrade on the measurement technique in the Baryon-Antibaryon Symmetry Experiment was developed for measuring the proton and/or antiproton magnetic moment. Using two particles in a trap stack simultaneously, a single repetitive measurement cycle time can be decreased significantly.
- Combined with the recent apparatus upgrade, a newly installed cooling trap, this opens prospects towards the measurements of the proton/antiproton **magnetic moments** with a **100 ppt** fractional precision (current values: 300 ppt for proton, 1500 ppt for antiproton).
- Comparing the newly measured proton and antiproton gfactors, we aim at a **15-fold** improved test of the **CPT invariance** in the baryon sector.
- A prospect for more precise and fast cyclotron frequency determination is foreseen when the phase-sensitive methods will be implemented and integrated to the experiment.

CPT invariance predicts:

$$q_p = -q_{\bar{p}},$$
 $m_p = m_{\bar{p}},$ $\mu_p = -\mu_{\bar{p}}.$

[1]

Motivation (2)

 Consider behaviour of common physical quantities under the three discrete transformation P, C and T:

Quantity	Notation	P	C	$\mid T$	
Position	\vec{x}	$-\vec{x}$	$+\vec{x}$	$+\vec{x}$	
Velocity	$\vec{v} = d\vec{x}/dt$	$-ec{v}$	$+\vec{v}$	$-ec{v}$	
Linear momentum	$ec{p}=mec{v}$	$-ec{p}$	$+ec{p}$	$-ec{p}$	
Angular momentum	$\vec{L} = \vec{r} \times \vec{p}$	$+ec{L}$	$+ec{L}$	$-ec{L}$	
Spin	\vec{S} or $\vec{\sigma}$	$+\vec{\sigma}$	$+\vec{\sigma}$	$-\vec{\sigma}$	
Helicity	$h = \vec{\sigma} \cdot \vec{p}/ p $	-h	+h	+h	
Electric Field	$ec{E}$	$-ec{E}$	$-ec{E}$	$ +ec{E}$	
Magnetic Field	$ec{B}$	$+ec{B}$	$-ec{B}$	$-ec{B}$	
Electric Dipole Moment	$ec{\sigma}\cdotec{E}$	$-ec{\sigma}\cdotec{E}$	$-ec{\sigma}\cdotec{E}$	$-ec{\sigma}\cdotec{E}$	
Magnetic Dipole Moment	$ec{\sigma}\cdotec{B}$	$+ \vec{\sigma} \cdot \vec{B}$	$-ec{\sigma}\cdotec{B}$	$+ \vec{\sigma} \cdot \vec{B}$	
Longitudinal Polarization	$ec{\sigma}\cdotec{p}$	$-ec{\sigma}\cdotec{p}$	$+ ec{\sigma} \cdot ec{p}$	$+ \vec{\sigma} \cdot \vec{p}$	
Transverse Polarization	$ec{\sigma}\cdot(ec{p}_1 imesec{p}_2)$	$+\vec{\sigma}\cdot(\vec{p}_1 imes\vec{p}_2)$	$ + \vec{\sigma} \cdot (\vec{p_1} \times \vec{p_2}) $	$ig -ec{\sigma}\cdot(ec{p}_1 imesec{p}_2) \ ig $	

Penning traps

Penning traps are used:

- to trap charged particles,
- to manipulate charged particles:
 - to park, move along the axis,
 - to excite axially/radially,
 - to "cool" axially/radially,
 - to split a cloud of particles,
 - •
- to measure the cyclotron frequency.

Physics topics include:

- -> ion spectra
- -> quantum computers
- -> atomic clocks
- -> fundamental properties: g-factor, q/m ratio

Trapping condition – E&B fields:

- Static quadratic electric potential
- Static uniform axial B-field

Trajectory – 3 orthogonal motions:

- Harmonic axial
- Circular planar modified cyclotron
- Circular planar magnetron

 $f_z = 650\ 000\ Hz$

[2]

 $f_+ = 29\ 000\ 000\ Hz$

 $f_{-} = 7000 \text{ Hz}$

[3]

BASE Penning trap stack

Four Penning traps are used in BASE at CERN:

a) Reservoir Trap -> long storage of particles -> stable 4.5 mm radius trap

b) **Precision Trap** -> frequency measurements

-> stable magnetic field

c) Analysis Trap -> spin-state determination

-> large magnetic "bottle"

d) Cooling Trap -> low orbit particle preparation

-> magnetic "bottle" term

-> new cyclotron detector

Two-trap method:

- Particle is initialized with low cyclotron orbit in the PT,
- Particle cyclotron frequency is measured in the PT,
- Particle spin is flipped in the PT,
- Transports: PT -> AT -> PT,
- Particle spin-state measured in the AT
 - -> ~172(8) mHz axial frequency difference for ↑ and ↓ states

Magnetic moment measurement setup

Measurement setup and cycle used in the 2016 proton campaign:

- 1. The proton is thermalized in the PT by the interaction with the cyclotron detector;
- 2. The proton modified cyclotron mode energy, which translates to an axial frequency shift (due to large B₂), is measured in the AT;
- 3. The cyclotron-cold particle preparation cycle is running until the proton prepared is colder than the pre-defined threshold value;
- 4. Then the spin state detection sequence is running in the AT, which continuously cycles FFT data collection, axial frequency determination and AT Larmor frequency irradiation, trying to register a frequency shift consistent with the spin-flip. This cycle stops when the spin state is determined with high fidelity. From this data one can tell if there was a spin flip in the PT before.
- 5. The particle is transported to the PT, where the cyclotron frequency is measured by axial-cyclotron sideband coupling. Once the cyclotron frequency is known, the calculated Larmor frequency irradiation is applied.
- 6. The sideband method increases the particle modified cyclotron mode energy, so the next cooling cycle starts.

Larmor-to-cyclotron frequency ratio is a direct measure of the proton/antiproton magnetic moment:

$$\frac{\mu_p}{\mu_N} = \frac{g_p}{2} = \frac{v_L}{v_c}, \quad \frac{\mu_{\overline{p}}}{\mu_N} = -\frac{g_{\overline{p}}}{2} = -\frac{v_L}{v_c}$$

$$\frac{q}{m} = 2\pi \frac{v_c}{B}$$
nuclear magneton

Frequency scatter rates in the AT

• rms = 48(1) mHz

- -> higher state resolution fidelity
- -> lower error rate

• rms = 65(3) mHz

- -> lower state resolution fidelity
- -> higher error rate

Latest improvements and Cooling trap

- New Cooling Trap:
 - > cold particle preparation faster as shorter effective electrode distance and lower resonator temperature (related to quality factor).
- We recently observed PT spin flips with 93% state detection fidelity.
- Triple trap two particle method does not require to cool the Larmor particle every cycle:
 - the cyclotron frequency is measured with the cyclotron particle, for which we do not require to be below the low energy threshold;
 - > savings in one cycle time.
- Headroom to improve the measurement by...

Uncertainty comparison

• μ_p/μ_N 300 ppt

• $\mu_{\bar{p}}/\mu_N$	1500 ppt
-------------------------	----------

Parameter	Relative shift on $g/2$ (ppt)	Error (ppt)	
Trapping potential	0	9	
Magnetic inhomogeneity	8	4	
Relativistic shift	-44	26	
Image current	1	1	
Image charge	-98	3	
Fitting	0	80	
Total	-133	123	

Effect	Correction (p.p.b.)	Uncertainty (p.p.b.)	
Image-charge shift	0.05	0.001	
Relativistic shift	0.03	0.003	
Magnetic gradient	0.22	$0.020 B_{2,PT}$:	
Magnetic bottle	0.12	0.009 \leftarrow Previous: $2.8 T/m$	2
Trap potential	-0.01	0.001 2023 : 0.0005 <i>T/n</i>	
Voltage drift	0.04	0.020	
Contaminants	0.00	0.280 only in TTM	
Drive temperature	0.00	0.970 Cycle time:	
Spin-state analysis	0.00	0.130 ← Previous: 45 mins	
Total systematic shift	0.44	1.020 2023: 11 min	
	limiting uncertainty	V	

limiting uncertainty

Double-trap measurement of the proton magnetic moment at 0.3 parts per billion precision by G. Schneider et al. (2017)

A parts-per-billion measurement of the antiproton magnetic moment by C. Smorra et al. (2017)

Antiproton beam monitors (1)

- Four new antiproton beam monitors were installed in 2022 (marked 1-4), to have better antiproton beam tracking along the experiment axis.
- Antiprotons are registered using Faraday cups, which consist of a capacitor, onto which the charge is distributed, and an amplification stage.

Antiproton beam monitors (2)

- Beam monitors and amplifier PCBs;
- Faraday cage for amplifying and connecting the hot lines to the coaxial outputs;
- Data readout rack: four oscilloscopes.
- Signals of the antiproton annihilation and H- ion deposition + charge liberation from the board;
- Different signal shape depends on the oscilloscope input resistance and whether the amplifier stage is used or not.

Thank you for your attention!

App. 1: Frequency measurement technique

- 1. A charged particle induces image charge on the electrodes.
- 2. An oscillating charge induces current.
- 3. The full circuit consists of particle-electrode system and in parallel connected resonator.
- 4. The resonator Nyquist-Johnson noise is measured at the FFT analyser.
- 5. The oscillating particle effectively shorts the resonator Nyquist-Johnson noise at its oscillation frequency.
- 6. This can be seen as a dip in the noise FFT profile.
- The temperature of the particle changes while it is interacting with the resonator.
 - -> Boltzmann statistics (particle in thermal equilibrium with a reservoir)

App. 2: Two-particle triple-trap method

- In the two-trap method the particle cyclotron energy is increased when the sideband coupling is active:
 - > need to re-prepare a colder particle every cycle.
- TTM already implemented in the 2016-2017 antiproton magnetic moment measurement campaign:
 - ➤ headroom for an improved proton magnetic moment in 2023.

App. 3: Key publications by BASE

Title	Journal	Year	Quantity	Value	Fractional precision
A 16-parts-per-trillion measurement of the antiproton-to- proton charge—mass ratio by M. J. Borchert et al.	Nature	2022	$\left(\frac{q}{m}\right)_{\bar{p}}/\left(\frac{q}{m}\right)_{p}$	-1.00000000003(16)	16 ppt
Sympathetic cooling of a trapped proton mediated by an LC circuit by M. Bohman et al.	Nature	2021	_	_	_
Direct limits on the interaction of antiprotons with axion-like dark matter by C. Smorra et al.	Nature	2019	_	_	-
Measurement of ultralow heating rates of a single antiproton in a cryogenic Penning trap by M. J. Borchert et al.	Phys. Rev. Lett.	2019	_	_	_
Double-trap measurement of the proton magnetic moment at 0.3 parts per billion precision by G. Schneider et al.	Science	2017	μ_p/μ_N	2.79284734462(82)	300 ppt
A parts-per-billion measurement of the antiproton magnetic moment by C. Smorra et al.	Nature	2017	$\mu_{ar{p}}/\mu_N$	-2.7928473441(42)	1500 ppt TTM
Observation of individual spin quantum transitions of a single antiproton by C. Smorra et al.	Phys. Lett. B	2017	-	_	_

References

- [1] American Physical Society: Alan Stonebraker
- [2] Matthias Borchert PhD thesis, University of Hannover, Germany
- [3] Onsets of nuclear deformation from measurments with the ISOLTRAP mass spectrometer by S. Naimi, 2010
- ... and key publications by BASE