

PIONEER:

A Next-Generation Rare Pion Decay Experiment

Stefan Hochrein

Leukerbad, 19.01.2023

Why study Pion decays?

The charged Pion (here π +) decay:

- lightest meson, consisting of *u* & *d* quarks
- Predominantly decays via weak force into μ due to helicity suppression of decay into e

Current situation:

• SM:
$$R_{e/\mu}=rac{\Gamma(\pi o e
u(\gamma))}{\Gamma(\pi o \mu
u(\gamma))}=1.23524(15) imes 10^{-4}$$

• Exp.:
$$R_{e/\mu} = \frac{\Gamma(\pi \to e\nu(\gamma))}{\Gamma(\pi \to \mu\nu(\gamma))} = 1.2327(23) \times 10^{-4}$$

Phase I measurement:

PIONEER goals:

- Improve current experimental sensitivity by a factor 15
- Directly test lepton flavour (e- μ) universality since $R_{e/\mu} \propto g_e/g_\mu$
- ullet Probe SM extensions affecting $R_{e/\mu}$

Motivation:

- Hints for lepton flavour universality violation in $B \to D^{(*)}$ decays
- Anomalous μ magnetic moment measurement
- Observed forward-backward asymmetry in $B \to D^{(*)}$ decays to e/μ

Why study Pion decays?

The charged Pion (here π +) decay:

- lightest meson, consisting of *u* & *d* quarks
- Predominantly decays via weak force into μ due to helicity suppression of decay into e

Current situation:

• SM:
$$R_{e/\mu}=rac{\Gamma(\pi o e
u(\gamma))}{\Gamma(\pi o \mu
u(\gamma))}=1.23524(15) imes 10^{-4}$$

• Exp.:
$$R_{e/\mu} = \frac{\Gamma(\pi \to e\nu(\gamma))}{\Gamma(\pi \to \mu\nu(\gamma))} = 1.2327(23) \times 10^{-4}$$

Phase II & III measurement:

PIONEER goals:

- Further improve experimental sensitivity for $R_{e/u}$
- Additionally measure pion beta-decay for a direct measurement of V_{ud} :

Motivation:

 Hints for Cabibbo angle anomaly combining results of various experiments (Non unitarity of the CKM matrix first row)

PIONEER will need:

- High intensity, low momentum pion beam
- Highly segmented active target (ATAR) with good time resolution
- Cylindrical tracker to link ATAR and calorimeter signal
- Fast calorimeter with excellent energy resolution, 25 radiation lengths deep and covering 3π sr solid angle
- Fast electronics, DAQ,...

PIONEER will need:

- High intensity, low momentum pion beam
- Highly segmented active target (ATAR) with good time resolution
- Cylindrical tracker to link ATAR and calorimeter signal
- Fast calorimeter with excellent energy resolution, 25 radiation lengths deep and covering 3π sr solid angle
- Fast electronics, DAQ,...

PIONEER will need:

- High intensity, low momentum pion beam
- Highly segmented active target (ATAR) with good time resolution
- Cylindrical tracker to link ATAR and calorimeter signal
- Fast calorimeter with excellent energy resolution, 25 radiation lengths deep and covering 3π sr solid angle
- Fast electronics, DAQ,...

Low Gain Avalanche Diode detector (LGAD):

- Silicon detector with moderate internal gain
- Provides high position and time resolution

Tracker:

- Silicon strip detector
- Measures position in z, φ and t

PIONEER will need:

- High intensity, low momentum pion beam
- Highly segmented active target (ATAR) with good time resolution
- Cylindrical tracker to link ATAR and calorimeter signal
- Fast calorimeter with excellent energy resolution, 25 radiation lengths deep and covering 3π sr solid angle
- Fast electronics, DAQ,...

Most likely LXe scintillation calorimeter:

- Fast scintillation light signal
- Good light yield and energy resolution

Alternatively LYSO crystals:

High density and good light yield

Expected signal

ATAR: Measures energy deposition of stopping π^+ (and μ^+) energy deposit in y strips energy deposit in y strips 24 layer number (z) layer number (z) energy deposit per layer energy deposit per layer 0.6 layer number (z) layer number (z)

Calorimeter:

• Measures e^+ energy deposition

Expected signal:

- Monoenergetic peak at $m_\pi/2$ for $\pi \to e$
- Michel spectrum with endpoint at $m_{\mu}/2$ for $\pi \to \mu \to e$

Thank you for listening!

Do you have questions?

Links & References:

PIONEER experiment proposal:

https://pioneer.npl.washington.edu/pub/Internal/WebHome/R-22-01.1_PIONEER.pdf

Experiment overview on the PSI website:

https://www.psi.ch/en/pioneer/documents

Figures from:

https://pioneer.npl.washington.edu/pub/Internal/WebHome/R-22-01.1_PIONEER.pdf

Main challenges and backgrounds

Challenges:

- Suppress sources of systematic uncertainties
- Handling increased pion rates (pulse pileup)

Backgrounds:

- Beamline muons and positrons
- Old muons decaying in the ATAR in accidental coincidence
- Muons and pions decaying in flight $(\mu DIF / \pi DIF)$
- Low energy tail of $\pi \to e$ signal due to geometrical acceptance, shower leakage and photonuclear interactions

Charged Pion decay

The charged Pion (here π^{+}):

- lightest meson, consisting of u & d quarks
- Predominantly decays via weak force into μ

The decay of charged pions is "helicity suppressed":

- Pion is a **spin 0** particle
- Because the spin is conserved in the decay, the products need to either have both helicity +1 or -1.
- Because of its (V-A) structure, the weak force only couples to left handed chirality particles and right handed chirality anti-particles
- The neutrino is (almost) massless so it is
 ultrarelativistic and helicity = chirality
- This means that the anti-lepton needs to have helicity -1 and right handed chirality
- Therefore, the lighter the anti-lepton, the more relativistic it is and the stronger the helicity suppression