

muCool: A novel low-energy muon beam for precision experiments

Giuseppe Lospalluto (ETH Zürich)

On the behalf of the muCool collaboration

CHIPP Winter School of Particle Physics 15–20 Jan 2023

Muon beamline at PSI

 High intensity positive muon beam (4.1 MeV) at the Paul Scherrer Institut (PSI)

$$p + p \rightarrow \pi^+ \dots \rightarrow \mu^+ \dots$$

(beam) (target)

• What for? e.g. Rare muon decay searches $(\mu^+ \rightarrow e^+\gamma, \mu^+ \rightarrow e^+e^-e^+)$

High "rate", poor "quality"

• How can we cool a muon beam? ($\tau_{\mu} = 2.2 \ \mu s$)

muCool: "fast" phase space compression

D. Taqqu. Phys. Rev. Lett. 97.194801 (2006)

Muon drift in crossed E and B-fields

muCool principle

Transverse Compression

A. Antognini et al. Phys. Rev. Lett. 125.164802 (2020)

muCool principle

A. Antognini et al. Phys. Rev. Lett. 125.164802 (2020)

Experiment

muCool target realisation:

- Lined Kapton-foil → Electric field for mixed compression
- Sapphire plates \rightarrow Vertical density gradient

Test of mixed compression

- PSI π E1 beamline (tuned to p ~15 MeV/c)
- *"Indirectly"* measure muon position by detecting decay positrons
- t = 0 given by entrance counter
- Large increase of counts: all muons reached target tip

Measured time spectra (2019 beamtime)

Muon extraction from gas target into vacuum

- Make a hole (1x1.3 mm²) at the tip of the target
- Extend electrode lines from the target terminating with pairs of parallel strips.
- Inject He at the orifice acting as a "gas barrier"

Muon extraction from gas target into vacuum

- Make a hole (1x1.3 mm²) at the tip of the target
- Extend electrode lines from the target terminating with pairs of parallel strips.
- Inject He at the orifice acting as a "gas barrier"

~ 90 % transmission without muon decay

Summary

- We propose a "fast" phase space compression scheme for μ + beam for future low energy experiments
- This is achieved with complex E-fields and B-field in combination with a He gas density gradient
- Mixed compression stage successfully tested!
- Performed simulations of muon extraction into vacuum and re-acceleration: experimental tests begin now

Summary

- We propose a "fast" phase space compression scheme for μ + beam for future low energy experiments
- This is achieved with complex E-fields and B-field in combination with a He gas density gradient
- Mixed compression stage successfully tested!
- Performed simulations of muon extraction into vacuum and re-acceleration: experimental tests begin now

EXTRA SLIDES

Muon production

muCool : a phase space compressor

"Fast" compression scheme (within 10 µs)

 $\sigma_x \sigma_{\theta_x} = 1910 \text{ mm mrad}$ 12.6% momentum bite.

 \blacktriangleright Efficiency of 10^{-4} - 10^{-5}

> Phase space improved by $10^9 - 10^8$

Muon-helium collisions

- collision type depends on muon energy
- consequences of the collisions: energy loss, direction change

Target realisation

• Lined Kapton-foil: Electric field for mixed compression

Target realisation

Extraction: xy plane

Position the parallel strips at x point where density drops sufficiently, i.e. drift angle in $\vec{E} \times \vec{B}$ tends to 0

0.4

0.2

6

x [mm]

-2

0

2

4

Extraction: zy plane

Position the parallel strips at x point where density drops sufficiently, i.e. drift angle in $\vec{E} \times \vec{B}$ tends to 0

Preliminary conclusions

Baseline Efficiency	Possible Improvements	Description
$5.6 \cdot 10^{-1} 4.8 \cdot 10^{-1} 4.1 \cdot 10^{-3} 8 \cdot 10^{-2} 4 \cdot 10^{-1} 7 \cdot 10^{-1} 8 \cdot 10^{-1} 7 \cdot 10^{-1} 7 \cdot 10^{-1} $	$\times 2 \\ \times 1.6 \\ \times 1.5 \\ \times 1.3$	Coupling to the 5 T solenoid with 60 mm coil diameter Impinging on the target entrance-face Stopping probability in active region of the target Compression towards the orifice (within 5 μ s) Extraction from the orifice Drift from orifice to re-acceleration region (in ~ 0.5 μ s) Re-acceleration and transport to the iron grid Transmission through the iron grid terminating the B-field
$1.4 \cdot 10^{-5}$	$\times 6$	Total baseline compression efficiency (and possible improvement)

HIMB rate: $10^{10} \mu/s$

- Material science: distribute the muCool beam to several μ SR setups at 40 kHz each
- Efficient Mu production: Mu-spectroscopy and Mugravity
- **Mathematical Re-accelerate to higher energies:** e.g. 60 MeV for storage-ring-like experiments as μ EDM or g-2

Next steps

