CP-Violation in $\eta^{(\prime)} ightarrow \pi^+\pi^-\mu^+\mu^-$

Maximilian Zillinger

University of Bern Institute for Theoretical Physics (ITP)

January 2023

CHIPP Winter School of Particle Physics 2023

based on

[M. Zillinger, B. Kubis, P. Sánchez-Puertas, JHEP 12 (2022)]

1/38

Properties of $\eta^{(\prime)}$ and Motivation for CP Violation

ullet $\eta^{(\prime)}$ are part of the pseudoscalar nonet of mesons

[https://upload.wikimedia.org/ wikipedia/commons/c/cd/Noneto_ mes%C3%B4nico_de_spin_0.png]

2/38

- Most decays are flavor-conserving and mediated by the electromagnetic or strong interaction
- \bullet Any flavor-conserving decay channel violating CP is expected to be highly suppressed within the SM (CP violation from weak interaction is very small)
- Sakharov arguments for the explanation of matter-antimatter asymmetry
 - ullet CP violation via the SM is not enough. Need additional sources

Maximilian Zillinger CP-Violation in $\eta^{(\prime)}$ decays January 2023

REDTOP Experiment

- High yield $\eta^{(\prime)}$ factory
- ullet Its aim is to produce $5\cdot 10^{12}\eta$ and $10^{10}\eta'$ in a few years of running
 - \bullet Compare: integrated η samples collected in earlier experiments amount to $10^9\eta$
- ullet Study very rare $\eta^{(\prime)}$ decays and test conservations laws like CP
- ullet Need to provide experimentalists with the most promising decay modes to search for CP violation
- Sanchez-Puertas et al. already investigated several decay modes:
 - 1. $\eta \rightarrow \mu^+\mu^-$
 - 2. $\eta \to \mu^+ \mu^- \gamma$
 - 3. $\eta \to \mu^+ \mu^- e^+ e^-$
 - 4. $\eta^{(\prime)} \to \pi^0 \mu^+ \mu^-$
 - 5. $\eta' \rightarrow \eta \mu^+ \mu^-$
- Now: study the decay mode $\eta^{(\prime)} \to \pi^+\pi^-\mu^+\mu^-$

CP violation via SMEFT

ullet Use Standard Model effective field theory (SMEFT) to describe CP violation in a model-independent way

$$\bullet \ \mathcal{L}_{\mathsf{SMEFT}} = \mathcal{L}_{\mathsf{SM}}^4 + \frac{1}{v} \sum_k C_k^5 \mathcal{O}_k^5 + \frac{1}{v^2} \sum_k C_k^6 \mathcal{O}_k^6 + \mathcal{O}\left(\frac{1}{v^3}\right)$$

- *CP*-violating operators receive very strong constraints from EDMs
- There is a loophole for operators of dimension 6 mixing strange quarks and muons with scalar/pseudoscalar structure

$$\mathcal{L}_{\mathsf{eff}} = \frac{\operatorname{Im} c_{ledq}^{2222}}{2v^2} \left[\left(\bar{\mu} i \gamma_5 \mu \right) \left(\bar{s} s \right) - \left(\bar{\mu} \mu \right) \left(\bar{s} i \gamma_5 s \right) \right]$$

EDM contributions are suppressed since they begin at two loop order

SM and BSM contribution to $\eta^{(\prime)} ightarrow \pi^+\pi^- \mu^+\mu^-$

• SM contribution:

$$iM_{SM} = -i\epsilon_{\mu\nu\rho\sigma}(p_1)^{\nu}(p_2)^{\rho}(p_{34})^{\sigma}F(s,t,u,s_{\ell})\frac{e}{s_{\ell}}(\bar{u}_s(p_4)\gamma^{\mu}v_{s'}(p_3))$$

BSM contribution:

$$\left\langle \mu^{-} \mu^{+} \pi^{-} \pi^{+} \middle| iT \middle| \eta^{(\prime)} \right\rangle = -\frac{i \operatorname{Im} c_{ledq}^{2222}}{2v^{2}} \left\langle \mu^{-} \mu^{+} \pi^{-} \pi^{+} \middle| (\bar{\mu}\mu) \left(\bar{s}i\gamma_{5}s \right) \middle| \eta^{(\prime)} \right\rangle$$

$$= -\frac{i \operatorname{Im} c_{ledq}^{2222}}{2v^{2}} \bar{u}_{s}(p_{4}) v_{s'}(p_{3}) \left\langle \pi^{-} \pi^{+} \middle| \bar{s}i\gamma_{5}s \middle| \eta^{(\prime)} \right\rangle$$

• Use SU(3) χ PT for the η decay and large- N_C χ PT + Unitarization for the η' decay to calculate the hadronization of the operator

Angular Asymmetry and results for $\eta^{(\prime)} ightarrow \pi^+ \pi^- \mu^+ \mu^-$

 \bullet For a 4-body decay, we use an angular asymmetry for probing CP violation

$$A_{\phi} = \frac{N(\sin(\phi) > 0) - N(\sin(\phi) < 0)}{N(\mathsf{all})}$$

 \bullet ϕ being the azimuthal angle between the pion and muon planes

$N_{\eta} = 5 \cdot 10^{12}$	$N_{\eta'} = 10^{10}$
$\Gamma(\eta \to \pi^+ \pi^- \mu^+ \mu^-) = 7.40 \cdot 10^{-15} \text{ GeV}$	$\Gamma(\eta' \to \pi^+ \pi^- \mu^+ \mu^-) = 3.72 \cdot 10^{-9} \text{ GeV}$
$N_{\eta o \pi^+ \pi^- \mu^+ \mu^-} \sim 28244$	$N_{\eta' \to \pi^+ \pi^- \mu^+ \mu^-} \sim 197872$
$A_{\phi} = -0.4(2.2) \cdot 10^{-5} \operatorname{Im} c_{\ell edq}^{2222}$	$A_{\phi} = -1.4(5) \cdot 10^{-5} \operatorname{Im} c_{\ell edq}^{2222}$
$\left \operatorname{Im} \left\{ c_{ledq}^{2222} \right\} \right \sim 1584$	$\left \operatorname{Im} \left\{ c_{ledq}^{2222} \right\} \right \sim 77$

Maximilian Zillinger CP-Violation in $\eta^{(\prime)}$ decays

Process	$ \operatorname{Im} c_{ledq}^{2222} $
$\eta \to \mu^+ \mu^-$	0.005
$\eta \to \mu^+ \mu^- \gamma$	1
$\eta \to \mu^+ \mu^- e^+ e^-$	25
$\eta \to \pi^0 \mu^+ \mu^-$	0.7
$\eta \to \pi^+ \pi^- \mu^+ \mu^-$	1584
$\eta' \to \pi^0 \mu^+ \mu^-$	11
$\eta' \to \eta \mu^+ \mu^-$	5
$\eta' \to \pi^+ \pi^- \mu^+ \mu^-$	77
nEDM	≤ 0.02

[M. Zillinger, B. Kubis, P. Sánchez-Puertas, JHEP 12 (2022)]

 \Rightarrow The leptonic decay $\eta \to \mu^+ \mu^-$ remains the most promising channel (golden-channel) to be studied at REDTOP

Backup-Slides

CP violation via SMEFT

- Treat the Standard Model (SM) as a low energy approximation of some more fundamental theory
- Effective field theory framework: include higher dimensional operators in a model-independent way in the Lagrangian
 - → "Standard Model effective field theory" (SMEFT)
- \bullet Higher-dimensional operators are suppressed by powers of the BSM scale Λ

$$\bullet \ \mathcal{L}_{\mathsf{SMEFT}} = \mathcal{L}_{\mathsf{SM}}^4 + \frac{1}{v} \sum_k C_k^5 \mathcal{O}_k^5 + \frac{1}{v^2} \sum_k C_k^6 \mathcal{O}_k^6 + \mathcal{O}\left(\frac{1}{v^3}\right)$$

ullet Dimensionless Wilson coefficients C_k^i

CP-Violating Operators

- CP-violating operators receive very strong constraints from EDMs
- There is a loophole for dimension 6 operators mixing light quarks and muons with scalar/pseudoscalar structure

$$\mathcal{L}_{\text{eff}} = -\frac{1}{2v^2} \Big\{ \operatorname{Im} c_{lequ}^{(1)2211} \big[\left(\bar{\mu} i \gamma_5 \mu \right) \left(\bar{u} u \right) + \left(\bar{\mu} \mu \right) \left(\bar{u} i \gamma_5 u \right) \big]$$

$$- \operatorname{Im} c_{ledq}^{2211} \big[\left(\bar{\mu} i \gamma_5 \mu \right) \left(\bar{d} d \right) - \left(\bar{\mu} \mu \right) \left(\bar{d} i \gamma_5 d \right) \big]$$

$$- \operatorname{Im} c_{ledq}^{2222} \big[\left(\bar{\mu} i \gamma_5 \mu \right) \left(\bar{s} s \right) - \left(\bar{\mu} \mu \right) \left(\bar{s} i \gamma_5 s \right) \big] \Big\}$$

Recent bounds on Wilson coefficients from the neutron EDM are:

$$|\operatorname{Im} c_{lqeu}^{(1)2211}| < 0.001, \quad |\operatorname{Im} c_{ledq}^{2211}| < 0.002, \quad |\operatorname{Im} c_{ledq}^{2222}| < 0.02$$

Most promising operator is:

$$\mathcal{L}_{\mathsf{eff}} = \frac{\operatorname{Im} c_{ledq}^{2222}}{2v^2} \left[\left(\bar{\mu} i \gamma_5 \mu \right) \left(\bar{s} s \right) - \left(\bar{\mu} \mu \right) \left(\bar{s} i \gamma_5 s \right) \right]$$

The Process $\eta^{(\prime)} ightarrow \pi^+\pi^-\mu^+\mu^-$ in the SM

•
$$\eta^{(\prime)}(P) \to \pi^+(p_1)\pi^-(p_2)\mu^+(p_3)\mu^-(p_4)$$

•
$$s = (p_1 + p_2)^2 = p_{12}^2$$
, $s_{\ell} = (p_3 + p_4)^2 = p_{34}^2$

•
$$t = (P - p_1)^2$$
, $u = (P - p_2)^2$

•
$$s + t + u = M^2 + 2M_\pi^2 + s_\ell$$

$$iM_{SM} = -i\epsilon_{\mu\nu\rho\sigma}(p_1)^{\nu}(p_2)^{\rho}(p_{34})^{\sigma}F(s,t,u,s_{\ell})\frac{e}{s_{\ell}}\left(\bar{u}_s(p_4)\gamma^{\mu}v_{s'}(p_3)\right)$$

The Process $\eta^{(\prime)} ightarrow \pi^+\pi^-\mu^+\mu^-$ in the SM

• Partial wave expansion:

$$\begin{split} F(s,t,u,s_{\ell}) &= \sum_{\text{odd}l} P'_{l}(z) f_{l}(s,s_{\ell}) \\ z &= \cos(\theta) = \frac{s(t-u)}{\lambda^{1/2}(s,M_{\pi}^{2},M_{\pi}^{2}) \lambda^{1/2}(s,s_{\ell},M^{2})} \end{split}$$

- Keep only the dominant P-wave: $F(s,t,u,s_{\ell})=f_1(s,s_{\ell})+\ldots$
- \bullet Factorisation ansatz: $f_1(s,s_\ell) = f_1(s) \bar{F}(s_\ell) = P(s) \Omega^1_1(s) \bar{F}(s_\ell)$
 - ullet P(s) is a real polynomial free of cuts
 - \bullet $\Omega^1_1(s)$ is the P-wave Omnès function of isospin I=1
 - ullet $ar{F}(s_\ell)$ models the coupling of the virtual photon to the hadronic system

Process dependence

- $P_{\eta} = A_{\eta}(1 + \alpha_{\eta}s)$
- $P_{\eta'} = A_{\eta'}(1 + \alpha_{\eta'}s + \beta_{\eta'}s^2)$
- Use VMD-model for $\bar{F}(s_{\ell})$: Include ρ and ρ' meson

$$\bar{F}(s_{\ell}) = \frac{m_{\rho}^{2} m_{\rho'}^{2}}{\left[m_{\rho}^{2} - s_{\ell} - i\sqrt{s_{\ell}}\Gamma_{\rho}(s_{\ell})\right] \left[m_{\rho'}^{2} - s_{\ell} - i\sqrt{s_{\ell}}\Gamma_{\rho'}(s_{\ell})\right]}$$

Source: S. Holz (2021)

BSM Contribution to $\eta^{(\prime)} \to \pi^+\pi^-\mu^+\mu^-$

14 / 38

BSM calculation

•
$$\mathcal{L}_{\mathsf{SMEFT}} \supset -\frac{\mathrm{Im}\,c_{ledq}^{2222}}{2v^2}\left(\bar{\mu}\mu\right)\left(\bar{s}i\gamma_5 s\right)$$

• Leading order contribution:

$$\langle \mu^{-} \mu^{+} \pi^{-} \pi^{+} | iT | \eta^{(\prime)} \rangle = -\frac{i \operatorname{Im} c_{ledq}^{2222}}{2v^{2}} \langle \mu^{-} \mu^{+} \pi^{-} \pi^{+} | (\bar{\mu}\mu) (\bar{s}i\gamma_{5}s) | \eta^{(\prime)} \rangle$$

$$= -\frac{i \operatorname{Im} c_{ledq}^{2222}}{2v^{2}} \bar{u}_{s}(p_{4}) v_{s'}(p_{3}) \langle \pi^{-} \pi^{+} | \bar{s}i\gamma_{5}s | \eta^{(\prime)} \rangle$$

BSM calculation

- Use SU(3) ChPT for $\langle \pi^-\pi^+ \big| \bar{s}i\gamma_5 s \big| \eta \rangle$
- Use large- N_C ChPT for $\langle \pi^-\pi^+|\bar{s}i\gamma_5s|\eta'\rangle$
- Incorporate pseudoscalar sources via $\chi = 2B_0(s+ip)$
- Find the coupling to $\bar{s}i\gamma_5 s$ by setting $p={\sf diag}(0,0,1)$
- We restrict to the isospin limit $m_u = m_d \equiv m$

$$M = \begin{pmatrix} m & 0 & 0 \\ 0 & m & 0 \\ 0 & 0 & m_s \end{pmatrix}$$

BSM calculation in $\eta o \pi^+\pi^-\mu^+\mu^-$

• At LO:

BSM calculation in $\eta o \pi^+\pi^-\mu^+\mu^-$

• At NLO:

BSM calculation in $\eta o \pi^+\pi^-\mu^+\mu^-$

• Organize matrix element into two parts:

$$\left\langle \pi^-\pi^+ \middle| \bar{s}i\gamma_5 s \middle| \eta \right\rangle_{\mathsf{NLO}} = \underbrace{M_{\eta\eta\to\pi^+\pi^-} \frac{1}{M_\eta^2 - s_\ell} \left\langle 0 \middle| \bar{s}i\gamma_5 s \middle| \eta \right\rangle}_{\eta-\mathsf{pole}} + \underbrace{M_{\mathsf{non-pole}}}_{\mathsf{non-pole}}$$

 Scattering amplitude and non-pole part can be decomposed into single-variable functions

$$M_{\eta\eta\to\pi^{+}\pi^{-}}(s,t,u) = \frac{M_{\pi}^{2}}{3F_{\pi}^{2}} + W_{\eta\eta}(s) + U_{\eta\eta}(t) + U_{\eta\eta}(u)$$

$$M_{\mathsf{non\text{-}pole}} = W_{\mathsf{non\text{-}pole}}(s) + U_{\mathsf{non\text{-}pole}}(t) + U_{\mathsf{non\text{-}pole}}(u)$$

BSM calculation in $\eta' o \pi^+\pi^-\mu^+\mu^-$

• At LO:

BSM calculation in $\eta' o \pi^+\pi^-\mu^+\mu^-$

• At NLO:

• Additional η' -pole part emerges

$$\begin{split} \left\langle \pi^-\pi^+ \middle| \bar{s}i\gamma_5 s \middle| \eta' \right\rangle_{\mathsf{NLO}} &= M_{\eta'\eta \to \pi^+\pi^-} \frac{1}{M_\eta^2 - s_\ell} \left\langle 0 \middle| \bar{s}i\gamma_5 s \middle| \eta \right\rangle \\ &\quad + M_{\eta'\eta' \to \pi^+\pi^-} \frac{1}{M_{\eta'}^2 - s_\ell} \left\langle 0 \middle| \bar{s}i\gamma_5 s \middle| \eta' \right\rangle + M_{\mathsf{non-pole}} \end{split}$$

BSM calculation in $\eta' \to \pi^+\pi^-\mu^+\mu^-$

- Can assign $\bar{s}i\gamma_5 s$ to the same quantum numbers as η -meson
 - ightarrow Rescattering effects will play a similar role as in the decay $\eta'
 ightarrow \eta \pi^+ \pi^-$
- Include $\pi\pi$ rescattering in the s-channel

$$\begin{split} \left\langle \pi^- \pi^+ \middle| \bar{s} i \gamma_5 s \middle| \eta' \right\rangle \middle|_{\mathsf{Omnes}} &= M_{\eta' \eta \to \pi^+ \pi^-}^{\mathsf{Omnes}} \frac{1}{M_\eta^2 - s_\ell} \left\langle 0 \middle| \bar{s} i \gamma_5 s \middle| \eta \right\rangle \\ &+ M_{\eta' \eta' \to \pi^+ \pi^-}^{\mathsf{Omnes}} \frac{1}{M_{\eta'}^2 - s_\ell} \left\langle 0 \middle| \bar{s} i \gamma_5 s \middle| \eta' \right\rangle + M_{\mathsf{non-pole}}^{\mathsf{Omnes}} \end{split}$$

- $M_{n'n \to \pi^+\pi^-}^{\text{Omnes}} = 32\pi M_{n'n \to \pi^+\pi^-}^{J=0} \Omega_0^0(s) + 80\pi (3\cos^2\theta_\pi 1)M_{n'n \to \pi^+\pi^-}^{J=2}$
- $M_{n'n'\to\pi^+\pi^-}^{\rm Omnes} = 32\pi M_{n'n'\to\pi^+\pi^-}^{J=0} \Omega_0^0(s) + 80\pi (3\cos^2\theta_\pi 1) M_{n'n'\to\pi^+\pi^-}^{J=2}$
- $M_{\text{non-nole}}^{\text{Omnes}} = 32\pi M_{\text{non-nole}}^{J=0} \Omega_0^0(s) + 80\pi (3\cos^2\theta_\pi 1)M_{\text{non-nole}}^{J=2}$

CP-Violating Angular Asymmetry

23 / 38

Angular Asymmetry

• $M = M_{SM} + M_{BSM}$

$$\begin{split} |M|^2 = & |M_{\rm SM}|^2 + |M_{\rm BSM}|^2 + 2 \, {\rm Re} \{ M_{\rm SM} M_{\rm BSM}^* \} \\ \frac{CP}{} & |M_{\rm SM}|^2 + |M_{\rm BSM}|^2 - 2 \, {\rm Re} \{ M_{\rm SM} M_{\rm BSM}^* \} \end{split}$$

 \rightarrow Probing CP violation will require the interference term

$$2\sum_{s,s'} \operatorname{Re}\{M_{\mathsf{SM}}M_{\mathsf{BSM}}^*\} = \frac{8m_{\mu}e \operatorname{Im}\left\{c_{ledq}^{2222}\right\}}{v^2 s_{\ell}} \operatorname{Re}\left\{F(s,t,u,s_{\ell}) \left\langle \pi^+ \pi^- \left| \bar{s}i\gamma^5 s \right| \eta^{(\prime)} \right\rangle^*\right\} \\ \cdot \epsilon_{\mu\nu\rho\sigma}(p_1)^{\mu}(p_2)^{\nu}(p_3)^{\rho}(p_4)^{\sigma}$$

• $\epsilon_{\mu\nu\rho\sigma}(p_1)^{\mu}(p_2)^{\nu}(p_3)^{\rho}(p_4)^{\sigma}\sim\sin\phi$ with ϕ being the azimuthal angle between the pion and muon planes.

Angular Asymmetry

Most suitable observable is the angular asymmetry defined as

$$A_{\phi} = \frac{N(\sin(\phi) > 0) - N(\sin(\phi) < 0)}{N(\mathsf{all})}$$

• Or when using $d\Gamma$

$$A_{\phi} = \frac{\int_{0}^{\pi} d\phi \frac{d\Gamma}{d\phi} - \int_{\pi}^{2\pi} d\phi \frac{d\Gamma}{d\phi}}{\int_{0}^{2\pi} d\phi \frac{d\Gamma}{d\phi}}$$

Numerator is given by

$$\int_{0}^{\pi} d\phi \frac{d\Gamma}{d\phi} - \int_{\pi}^{2\pi} d\phi \frac{d\Gamma}{d\phi} = -\frac{m_{\mu}\sqrt{\pi\alpha} \operatorname{Im}\left\{c_{ledq}^{2222}\right\}}{2^{13}\pi^{5}v^{2}M^{3}} \int ds \int ds \int dy_{12}\lambda(M^{2}, s, s_{\ell})\sqrt{\frac{s}{s_{\ell}}}$$

$$\cdot \lambda_{34}^{2}\sqrt{\lambda_{12}^{2} - y_{12}^{2}} \left(\operatorname{Re}F(s, t, u, s_{\ell})\operatorname{Re}\left\langle\pi^{+}\pi^{-}\left|\bar{s}i\gamma^{5}s\right|\eta^{(\prime)}\right\rangle\right)$$

$$+ \operatorname{Im}F(s, t, u, s_{\ell})\operatorname{Im}\left\langle\pi^{+}\pi^{-}\left|\bar{s}i\gamma^{5}s\right|\eta^{(\prime)}\right\rangle\right)$$

Results

26 / 38

Interlude: Sensitivity

Estimate the size of the Wilson coefficient that can be accessed at REDTOP (Sensitivity)

- Example:
 - **1** Assume N_{η} η -mesons will be produced
 - ② Use $Br(\eta \to \pi^+\pi^-\mu^+\mu^-)$ to calculate the number of $\eta \to \pi^+\pi^-\mu^+\mu^-$ events: $N_{n\to\pi^+\pi^-\mu^+\mu^-} = \text{Br}(\eta \to \pi^+\pi^-\mu^+\mu^-) \cdot N_n$
 - **3** Angular asymmetry A_{ϕ} is non-vanishing in the SM due to statistical fluctuations/noise: $\Delta A_{\phi}^{\text{SM}} = \frac{\sqrt{N}}{N} = \frac{1}{\sqrt{N}}$
 - If BSM signal is below $\Delta A_{\phi}^{\text{SM}}$, new physics would be buried by the noise: $A_{\perp}^{\mathsf{BSM}} \stackrel{!}{>} \Delta A_{\perp}^{\mathsf{SM}}$

Results for $\eta^{(\prime)} ightarrow \pi^+\pi^-\mu^+\mu^-$

$N_{\eta} = 5 \cdot 10^{12}$	$N_{\eta'}=10^{10}$
$\Gamma(\eta \to \pi^+ \pi^- \mu^+ \mu^-) = 7.40 \cdot 10^{-15} \text{GeV}$	$\Gamma(\eta' \to \pi^+ \pi^- \mu^+ \mu^-) = 3.72 \cdot 10^{-9} \text{ GeV}$
$N_{\eta \to \pi^+ \pi^- \mu^+ \mu^-} \sim 28244$	$N_{\eta' \to \pi^+ \pi^- \mu^+ \mu^-} \sim 197872$
$A_{\phi} = -5.41 \cdot 10^{-6} \mathrm{Im} \left\{ c_{ledq}^{2222} \right\}$	$A_{\phi} = -3.78 \cdot 10^{-5} \text{Im} \left\{ c_{ledq}^{2222} \right\}$
$\left \operatorname{Im} \left\{ c_{ledq}^{2222} \right\} \right \sim 1100.15$	$\left \operatorname{Im}\left\{c_{ledq}^{2222}\right\}\right \sim 26.58$

Process	$ \operatorname{Im} c_{ledq}^{2222} $
$\eta \to \mu^+ \mu^-$	0.005
$\eta \to \mu^+ \mu^- \gamma$	1
$\eta \to \mu^+ \mu^- e^+ e^-$	25
$\eta \to \pi^0 \mu^+ \mu^-$	0.69
$\eta \to \pi^+ \pi^- \mu^+ \mu^-$	1100.15
$\eta' \to \pi^0 \mu^+ \mu^-$	10.96
$\eta' \to \eta \mu^+ \mu^-$	4.46
$\eta' \to \pi^+ \pi^- \mu^+ \mu^-$	26.58
nEDM	≤ 0.02

Source: Sanzches-Puertas (2019, 2022)

 \Rightarrow The leptonic decay $\eta \to \mu^+ \mu^-$ remains the most promising channel (golden-channel) to be studied at REDTOP

Summary

Summary

- ullet We employed the SMEFT framework to include higher-dimensional CP-violating operators
- Studied their contribution to the processes $\eta^{(\prime)} \to \pi^+\pi^-\mu^+\mu^-$ via the angular asymmetry
- \bullet The η' decay gives rise to a better sensitivity than the corresponding η decay
- Both processes can not compete with the golden channel $\eta \to \mu^+ \mu^-$ and do not exceed the bound from the nEDM with the projected statistics at REDTOP

Strong CP-Problem

- ullet Possible $P\ \&\ CP$ -violating operator appearing in the QCD Lagrangian
 - $m{egin{align*} \bullet \ heta-{
 m term:} \ \mathcal{L}_{ heta} = rac{g_s^2 heta}{32 \pi^2} G_{\mu
 u}^a ilde{G}^{a \mu
 u} \end{aligned}}$
- ullet Bounds from the neutron EDM yield vanishing small parameter $heta \leq 10^{-10}$
 - ⇒ Strong CP-problem
- Usually excluded from the QCD Lagrangian
 - \Rightarrow QCD is CP-conserving

- Treat the Standard Model (SM) as a low energy approximation of some more fundamental theory
- Effective field theory framework: include higher dimensional operators in the Lagrangian
 - → "Standard Model effective field theory" (SMEFT)
- \bullet Higher-dimensional operators are suppressed by powers of the BSM scale Λ

$$\bullet \ \mathcal{L}_{\mathsf{SMEFT}} = \mathcal{L}_{\mathsf{SM}}^4 + \frac{1}{v} \sum_k C_k^5 \mathcal{O}_k^5 + \frac{1}{v^2} \sum_k C_k^6 \mathcal{O}_k^6 + \mathcal{O}\left(\frac{1}{v^3}\right)$$

- ullet Dimensionless Wilson coefficients C_k^i
- At Dimension 6: 59 independent operators

33 / 38

Classification of dim=6 Operators

- CP-violating operators start with dimension 6
- Purely hadronic operators CP_{H} : $\mathcal{O}_{uG}=\left(\bar{q}_p\sigma^{\mu\nu}T^Ad_r\right)\varphi G^A_{\mu\nu}$
- Operators mixing lepton and quark bilinears CP_{HL} : $\mathcal{O}_{ledq} = \left(\bar{l}_p^j e_r\right) \left(\bar{d}_s q_t^j\right) + \mathsf{h.c.}$
- ullet Purely leptonic operators $CP_{
 m L}$: ${\cal O}_{le}=\left(ar l_p\gamma_\mu l_r
 ight)(ar e_s\gamma^\mu e_t)+{
 m h.c.}$
 - \bullet Irrelevant for the decay mode $\eta^{(\prime)} \to \pi^+\pi^-\ell^+\ell^-$
- ullet Category affecting lepton-photon interactions: $\mathcal{O}_{eB} = \left(ar{l}_p \sigma_{\mu \nu} e_r \right) \varphi B_{\mu
 u}$
 - \bullet Will be discarded as there are too strong constraints arising from $e/\mu {\rm EDMs}$

CP_H category

- Main contribution from purely hadronic operators results in a CP-violating shift of the $\eta^{(\prime)}\pi^+\pi^-\gamma^*$ coupling
- Corresponding amplitude can be parameterized as

$$\mathcal{A}(\eta \to \pi^+ \pi^- \gamma^*) = M \epsilon_{\mu\nu\rho\sigma} (p_1)^{\mu} (p_2)^{\nu} k^{\rho} \epsilon^{\sigma} + E \left((\epsilon \cdot p_1) (k \cdot p_2) - (\epsilon \cdot p_2) (k \cdot p_1) \right)$$

- ullet M: magnetic transitions driven by the chiral anomaly in the SM
- ullet E: electric transitions that are P and CP odd

CP_{H} category

- Hadronic operators also generate CP-violating shifts in the $\eta \rho \gamma^*$ coupling
 - The $\pi^+\pi^-$ system has to be in an odd partial wave due to C-symmetry: effective resonance is a ρ

36 / 38

CP_{H} category

- Hadronic operators also generate CP-violating shifts in the $\eta\rho\gamma^{\star}$ coupling
 - The $\pi^+\pi^-$ system has to be in an odd partial wave due to C -symmetry: effective resonance is a ρ

- $\eta \rho \gamma^*$ coupling contributes to the neutron EDM at one loop
 - Generates constraints on E: $E/M \le 10^{-11}$
- ightarrow No chance to observe CP-violation: neglect CP_{H} category

CP_{HL} category

- Operators made up of a lepton bilinear plus a quark bilinear
- Most operators of this category are of VV, AA or VA structure:

$$\left(\bar{l}_p\gamma_\mu l_r\right)\left(\bar{u}_s\gamma^\mu u_t\right) + \text{h.c.}$$

- $\Rightarrow CP$ -conserving
- Left with 3 operators:

$$\begin{split} \mathcal{O}_{ledq} &= \left(\bar{l}_p^j e_r \right) \left(\bar{d}_s q_t^j \right) + \text{h.c.} \\ \mathcal{O}_{lequ}^{(1)} &= \left(\bar{l}_p^j e_r \right) \epsilon_{jk} \left(\bar{q}_s^k u_t \right) + \text{h.c.} \\ \mathcal{O}_{lequ}^{(3)} &= \left(\bar{l}_p^j \sigma_{\mu\nu} e_r \right) \epsilon_{jk} \left(\bar{q}_s^k \sigma^{\mu\nu} u_t \right) + \text{h.c.} \end{split}$$

• Only $\mathcal{O}-\mathcal{O}^\dagger$ is CP-odd, requiring a non-vanishing imaginary part of the corresponding Wilson coefficient

CP_{HL} category

- Operators with a scalar/pseudoscalar lepton structure only contribute at two-loop to the neutron EDM
 - Green's functions $\langle 0|T\big\{V^{\mu}(x)S(P)(0)\big\}|0\rangle$ vanish in QED+QCD due to C symmetry

- Operators made up of vector, axial or tensor structure already contribute at one-loop
 - ullet Stronger bounds from neutron EDM: Neglect operator $\mathcal{O}^{(3)}_{lequ}$
- ullet Only keep light quarks u, d and s as well as muonic operators
 - Operators mixing electrons with quarks receive very stright bounds from EDMs of heavy atoms and molecules