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Motivation



Electrodynamics

L = −1
4FµνF

µν

[James Maxwell, 1865]

Richard Feynman (in picture), Sin-Itiro Tomonaga
and Julian Schwinger were awarded the Nobel
Prize in 1965
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Non-linear extensions of QED

An infinitely populated class of theories [Plebanski, 1968]

L = −1
4FµνF

µν + f(Fµν)

The most well known example: Born-Infeld [Born & Infeld, 1934]

L = b2

[
1 −

√
1 + 1

2b2FµνFµν − 1
16b4

(
Fµν F̃µν

)2
]

Fµν(x) = ∂µAν − ∂νAµ F̃µν = 1
2εµνρσF

ρσ
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Coming soon

LUXE experiment @DESY [Abramowicz et al.
2102.02032 [hep-ex]]

PVLAS experiment @Università degli Studi di
Ferrara [Ejlli et al. 2005.12913 [phys.optics]]
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Lattice



Lattice?

For the Italian speakers:
NOT the theory of
mattresses
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Lattice approach

What’s a lattice?
”Discretized” space-time
[Grattringer & Lang, Springer Berlin,
2010]

• L points per dimension,
a is the space between two
points;

• ψ: quarks, electrons;
• the field Aµ links two points;
• Fµν is called ”plaquette”;
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Lattice approach

• Non-perturbative
approach;

• Wick rotation:
t → iτ , gµν → 1, ”classical”
partition function;

• Periodic boundary
conditions;
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Born-Infeld on a lattice

Only one simulation done so far, in 2005 [Kogut-Sinclaire, 0509097 [hep-lat]]

Action:

S = b2
∫
d4x

[√
1 + 1

2b2FµνFµν + 1
16b4Fµν F̃µν − 1

]
How to discretize?

Continuum Discrete∫
d4x

∑
x

Fµν(x) = ∂µAν − ∂νAµ Fµν(x) = Aν(x+ µ̂) −Aν(x) −Aµ(x+ ν̂) +Aµ(x)

Aµ(x) → Aµ(x) − ∂µχ Aµ(x) → Aµ(x) − χ(x+ µ̂) + χ(x)

Fµν invariant under U(1) gauge transformation
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Results



Energy

Monte-Carlo algorithm used to run the simulation

Energy found by Kogut-Sinclair Energy in my simulation
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Wilson line

In continuum

W [γ] = exp
{
i
∮

γ
Aµ(x)dxµ

}

On the lattice (Kogut-Sinclair)

W [x] = exp

ie
∑

t

A4(x, t) − 1
L3

∑
y
A4(y, t)




Net charge = 0
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Wilson line

Wilson lines found by Kogut-Sinclair Wilson lines in my simulation

More statistics needed for e > 1.5
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Final recap

• Non-linear QED to explain soon within experimental reach non-perturbative
phenomena;

• Lattice approach is non perturbative, ideal to simulate non-linear QED;
• Some thermalization issues still
• Once the code is improved:

1. Improved statistics;
2. Phenomenological comparison between different theories.

Me in Zuerich Professor Dr. Marina K. Marinkovic, my supervisor
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Final recap

And many many thanks also to my co-supervisor Veronica Errasti Diez (LMU Munich -
Excellence Cluster Origin)

Me in Zuerich Professor Dr. Marina K. Marinkovic, my supervisor
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Supplementary slides



Gauge fixing

The Landau gauge is imposed:∑
µ

(Aµ(x+ µ̂) −Aµ(x)) = 0 (1)

Two different gauge fixing method used:

1. Relaxation
• Gauge fixing is equivalent to maximize the function F g[U ] = 1

V
Re

∑
x

fg(x)
• Value locally optimized, iteratively maximizing fg(x)
• unitary transformations, O(N2)

2. Since
∑

µ (Aµ(x+ µ̂) −Aµ(x)) = 0 is a system of N linear equations it can be solved
with an algorithm, which is O(N). The transformation is not unitary.
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Relaxation method
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Thermalization



Metropolis algorithm and heat bath

Steps of metropolis algorithm:

1. Start with a configuration X with energy E[X];
2. propose a new configuration X ′ with energy E[X ′];
3. if E[X ′] < E[X] accept the new configuration;
4. if E[X ′] > E[X] accept the new configuration with a probability of e−∆E ;
5. repeat.

Heat bath algorithm combines the steps of Metropolis: sample X directly according to
the probability distribution

dP (X) = dXexp(−E[X])
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Heat bath method
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Thermalization
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