ค) scnat

Swiss Institute of
Particle Physics

Simulating the non-linear QED on the lattice

Gabriele Pierini, work with Prof. Dr. Marina K. Marinkovic 20/01/2023

Outline

1. Motivation
2. Lattice
3. Results

Motivation

Electrodynamics

$$
\mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}
$$

Electrodynamics

$$
\mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}
$$

[James Maxwell, 1865]

Electrodynamics

$$
\mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}
$$

[James Maxwell, 1865]

Richard Feynman (in picture), Sin-Itiro Tomonaga and Julian Schwinger were awarded the Nobel Prize in 1965

Non-linear extensions of QED

Non-linear extensions of QED

An infinitely populated class of theories [Plebanski, 1968]

$$
\mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+f\left(F_{\mu \nu}\right)
$$

Non-linear extensions of QED

An infinitely populated class of theories [Plebanski, 1968]

$$
\mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+f\left(F_{\mu \nu}\right)
$$

The most well known example: Born-Infeld [Born \& Infeld, 1934]

$$
\mathcal{L}=b^{2}\left[1-\sqrt{1+\frac{1}{2 b^{2}} F_{\mu \nu} F^{\mu \nu}-\frac{1}{16 b^{4}}\left(F_{\mu \nu} \tilde{F}^{\mu \nu}\right)^{2}}\right]
$$

Non-linear extensions of QED

An infinitely populated class of theories [Plebanski, 1968]

$$
\mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+f\left(F_{\mu \nu}\right)
$$

The most well known example: Born-Infeld [Born \& Infeld, 1934]

$$
\mathcal{L}=b^{2}\left[1-\sqrt{1+\frac{1}{2 b^{2}} F_{\mu \nu} F^{\mu \nu}-\frac{1}{16 b^{4}}\left(F_{\mu \nu} \tilde{F}^{\mu \nu}\right)^{2}}\right]
$$

$$
F_{\mu \nu}(x)=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu} \quad \tilde{F}_{\mu \nu}=\frac{1}{2} \varepsilon_{\mu \nu \rho \sigma} F^{\rho \sigma}
$$

Coming soon

LUXE experiment @DESY [Abramowicz et al. 2102.02032 [hep-ex]]

PVLAS experiment @Università degli Studi di Ferrara [Ejlli et al. 2005.12913 [phys.optics]]

Lattice

Lattice?

Lattice?

For the Italian speakers: NOT the theory of mattresses

Lattice approach

What's a lattice?
"Discretized" space-time
[Grattringer \& Lang, Springer Berlin, 2010]

Lattice approach

What's a lattice?
"Discretized" space-time
[Grattringer \& Lang, Springer Berlin, 2010]

- L points per dimension, a is the space between two points;

Lattice approach

What's a lattice?
"Discretized" space-time
[Grattringer \& Lang, Springer Berlin, 2010]

- L points per dimension, a is the space between two points;
- ψ : quarks, electrons;

Lattice approach

What's a lattice?
"Discretized" space-time
[Grattringer \& Lang, Springer Berlin, 2010]

- L points per dimension, a is the space between two points;
- ψ : quarks, electrons;
- the field A_{μ} links two points;

Lattice approach

What's a lattice?
"Discretized" space-time
[Grattringer \& Lang, Springer Berlin, 2010]

- L points per dimension, a is the space between two points;
- ψ : quarks, electrons;
- the field A_{μ} links two points;
- $F_{\mu \nu}$ is called "plaquette";

Lattice approach

- Non-perturbative approach;

Lattice approach

- Non-perturbative approach;
- Wick rotation:
$t \rightarrow i \tau, g_{\mu \nu} \rightarrow 1$, "classical" partition function;

Lattice approach

- Non-perturbative approach;
- Wick rotation: $t \rightarrow i \tau, g_{\mu \nu} \rightarrow 1$, "classical" partition function;
- Periodic boundary conditions;

Born-Infeld on a lattice

Only one simulation done so far, in 2005 [Kogut-Sinclaire, 0509097 [hep-lat]]

Born-Infeld on a lattice

Only one simulation done so far, in 2005 [Kogut-Sinclaire, 0509097 [hep-lat]] Action:

$$
S=b^{2} \int d^{4} x\left[\sqrt{1+\frac{1}{2 b^{2}} F_{\mu \nu} F^{\mu \nu}+\frac{1}{16 b^{4}} F_{\mu \nu} \tilde{F}^{\mu \nu}}-1\right]
$$

How to discretize?

$$
\begin{array}{c|c}
\text { Continuum } & \text { Discrete } \\
\int d^{4} x & \sum_{x} \\
F_{\mu \nu}(x)=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu} & F_{\mu \nu}(x)=A_{\nu}(x+\hat{\mu})-A_{\nu}(x)-A_{\mu}(x+\hat{\nu})+A_{\mu}(x) \\
A_{\mu}(x) \rightarrow A_{\mu}(x)-\partial_{\mu} \chi & A_{\mu}(x) \rightarrow A_{\mu}(x)-\chi(x+\hat{\mu})+\chi(x)
\end{array}
$$

Born-Infeld on a lattice

Only one simulation done so far, in 2005 [Kogut-Sinclaire, 0509097 [hep-lat]] Action:

$$
S=b^{2} \int d^{4} x\left[\sqrt{1+\frac{1}{2 b^{2}} F_{\mu \nu} F^{\mu \nu}+\frac{1}{16 b^{4}} F_{\mu \nu} \tilde{F}^{\mu \nu}}-1\right]
$$

How to discretize?

$F_{\mu \nu}$ invariant under $U(1)$ gauge transformation

Results

Energy

Monte-Carlo algorithm used to run the simulation

Energy found by Kogut-Sinclair

Energy in my simulation

Wilson line

In continuum

$$
W[\gamma]=\exp \left\{i \oint_{\gamma} A_{\mu}(x) d x^{\mu}\right\}
$$

Wilson line

In continuum

$$
W[\gamma]=\exp \left\{i \oint_{\gamma} A_{\mu}(x) d x^{\mu}\right\}
$$

On the lattice (Kogut-Sinclair)

$$
W[x]=\exp \left\{i e \sum_{t}\left[A_{4}(\mathbf{x}, t)-\frac{1}{L^{3}} \sum_{\mathbf{y}} A_{4}(\mathbf{y}, t)\right]\right\}
$$

Wilson line

In continuum

$$
W[\gamma]=\exp \left\{i \oint_{\gamma} A_{\mu}(x) d x^{\mu}\right\}
$$

On the lattice (Kogut-Sinclair)

Wilson line

Wilson lines found by Kogut-Sinclair

Wilson lines in my simulation

Wilson line

Wilson lines found by Kogut-Sinclair

Wilson lines in my simulation

More statistics needed for $e>1.5$

Final recap

- Non-linear QED to explain soon within experimental reach non-perturbative phenomena;
- Lattice approach is non perturbative, ideal to simulate non-linear QED;
- Some thermalization issues still
- Once the code is improved:

1. Improved statistics;
2. Phenomenological comparison between different theories.

Final recap

And many many thanks also to my co-supervisor Veronica Errasti Diez (LMU Munich Excellence Cluster Origin)

Me in Zuerich

Professor Dr. Marina K. Marinkovic, my supervisor

Supplementary slides

Gauge fixing

The Landau gauge is imposed:

$$
\begin{equation*}
\sum_{\mu}\left(A_{\mu}(x+\hat{\mu})-A_{\mu}(x)\right)=0 \tag{1}
\end{equation*}
$$

Two different gauge fixing method used:

Gauge fixing

The Landau gauge is imposed:

$$
\begin{equation*}
\sum_{\mu}\left(A_{\mu}(x+\hat{\mu})-A_{\mu}(x)\right)=0 \tag{1}
\end{equation*}
$$

Two different gauge fixing method used:

1. Relaxation

- Gauge fixing is equivalent to maximize the function $F^{g}[U]=\frac{1}{V} \operatorname{Re} \sum_{x} f^{g}(x)$
- Value locally optimized, iteratively maximizing $f^{g}(x)$
- unitary transformations, $O\left(N^{2}\right)$

Gauge fixing

The Landau gauge is imposed:

$$
\begin{equation*}
\sum_{\mu}\left(A_{\mu}(x+\hat{\mu})-A_{\mu}(x)\right)=0 \tag{1}
\end{equation*}
$$

Two different gauge fixing method used:

1. Relaxation

- Gauge fixing is equivalent to maximize the function $F^{g}[U]=\frac{1}{V} \operatorname{Re} \sum_{x} f^{g}(x)$
- Value locally optimized, iteratively maximizing $f^{g}(x)$
- unitary transformations, $O\left(N^{2}\right)$

2. Since $\sum_{\mu}\left(A_{\mu}(x+\hat{\mu})-A_{\mu}(x)\right)=0$ is a system of N linear equations it can be solved with an algorithm, which is $O(N)$. The transformation is not unitary.

Relaxation method

Thermalization relaxation, $\mathrm{L}=8$

Thermalization

Metropolis algorithm and heat bath

Steps of metropolis algorithm:

1. Start with a configuration X with energy $E[X]$;
2. propose a new configuration X^{\prime} with energy $E\left[X^{\prime}\right]$;
3. if $E\left[X^{\prime}\right]<E[X]$ accept the new configuration;
4. if $E\left[X^{\prime}\right]>E[X]$ accept the new configuration with a probability of $e^{-\Delta E}$;
5. repeat.

Metropolis algorithm and heat bath

Steps of metropolis algorithm:

1. Start with a configuration X with energy $E[X]$;
2. propose a new configuration X^{\prime} with energy $E\left[X^{\prime}\right]$;
3. if $E\left[X^{\prime}\right]<E[X]$ accept the new configuration;
4. if $E\left[X^{\prime}\right]>E[X]$ accept the new configuration with a probability of $e^{-\Delta E}$;
5. repeat.

Heat bath algorithm combines the steps of Metropolis: sample X directly according to the probability distribution

$$
d P(X)=d X \exp (-E[X])
$$

Heat bath method

