

Simulating the non-linear QED on the lattice

Gabriele Pierini, work with Prof. Dr. Marina K. Marinkovic 20/01/2023

Outline

1. Motivation

2. Lattice

3. Results

Motivation

Electrodynamics

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu}$$

Electrodynamics

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu}$$

[James Maxwell, 1865]

Electrodynamics

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu}$$

[James Maxwell, 1865]

Richard Feynman (in picture), Sin-Itiro Tomonaga and Julian Schwinger were awarded the Nobel Prize in 1965

An infinitely populated class of theories [Plebanski, 1968]

$$\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + f(F_{\mu\nu})$$

An infinitely populated class of theories [Plebanski, 1968]

$$\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + f(F_{\mu\nu})$$

The most well known example: Born-Infeld [Born & Infeld, 1934]

$$\mathcal{L} = b^2 \left[1 - \sqrt{1 + \frac{1}{2b^2} F_{\mu\nu} F^{\mu\nu} - \frac{1}{16b^4} \left(F_{\mu\nu} \tilde{F}^{\mu\nu} \right)^2} \right]$$

An infinitely populated class of theories [Plebanski, 1968]

$$\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + f(F_{\mu\nu})$$

The most well known example: Born-Infeld [Born & Infeld, 1934]

$$\mathcal{L} = b^2 \left[1 - \sqrt{1 + \frac{1}{2b^2} F_{\mu\nu} F^{\mu\nu} - \frac{1}{16b^4} \left(F_{\mu\nu} \tilde{F}^{\mu\nu} \right)^2} \right]$$

$$F_{\mu\nu}(x) = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$$
 $\tilde{F}_{\mu\nu} = \frac{1}{2}\varepsilon_{\mu\nu\rho\sigma}F^{\rho\sigma}$

Coming soon

LUXE experiment @DESY [Abramowicz et al. 2102.02032 [hep-ex]]

PVLAS experiment @Università degli Studi di Ferrara [Ejlli et al. 2005.12913 [phys.optics]]

Lattice

Lattice?

Lattice?

For the Italian speakers: **NOT** the theory of mattresses

What's a lattice?
"Discretized" space-time
[Grattringer & Lang, Springer Berlin,
2010]

L points per dimension,
 a is the space between two points;

- L points per dimension,
 a is the space between two points;
- ψ : quarks, electrons;

- L points per dimension,
 a is the space between two points;
- ψ : quarks, electrons;
- \cdot the field A_{μ} links two points;

- L points per dimension,
 a is the space between two points;
- ψ : quarks, electrons;
- \cdot the field A_{μ} links two points;
- $F_{\mu\nu}$ is called "plaquette";

 Non-perturbative approach;

- Non-perturbative approach;
- Wick rotation: $t \to i\tau,\, g_{\mu\nu} \to 1,\, \text{"classical"}$ partition function;

- Non-perturbative approach;
- Wick rotation: $t \to i \tau, \, g_{\mu\nu} \to 1, \, {\rm "classical"}$ partition function;
- Periodic boundary conditions;

Born-Infeld on a lattice

Only one simulation done so far, in 2005 [Kogut-Sinclaire, 0509097 [hep-lat]]

Born-Infeld on a lattice

Only one simulation done so far, in 2005 [Kogut-Sinclaire, 0509097 [hep-lat]] Action:

$$S = b^2 \int d^4x \left[\sqrt{1 + \frac{1}{2b^2} F_{\mu\nu} F^{\mu\nu} + \frac{1}{16b^4} F_{\mu\nu} \tilde{F}^{\mu\nu}} - 1 \right]$$

How to discretize?

$$\begin{array}{ccc} \text{Continuum} & \text{Discrete} \\ & \int d^4x & \sum_x \\ F_{\mu\nu}(x) = \partial_\mu A_\nu - \partial_\nu A_\mu & F_{\mu\nu}(x) = A_\nu(x+\hat\mu) - A_\nu(x) - A_\mu(x+\hat\nu) + A_\mu(x) \\ & A_\mu(x) \to A_\mu(x) - \partial_\mu \chi & A_\mu(x) \to A_\mu(x) - \chi(x+\hat\mu) + \chi(x) \end{array}$$

Born-Infeld on a lattice

Only one simulation done so far, in 2005 [Kogut-Sinclaire, 0509097 [hep-lat]]
Action:

$$S = b^2 \int d^4x \left[\sqrt{1 + \frac{1}{2b^2} F_{\mu\nu} F^{\mu\nu} + \frac{1}{16b^4} F_{\mu\nu} \tilde{F}^{\mu\nu}} - 1 \right]$$

How to discretize?

$$\begin{array}{ccc} \text{Continuum} & \text{Discrete} \\ & \int d^4x & \sum_x \\ F_{\mu\nu}(x) = \partial_\mu A_\nu - \partial_\nu A_\mu & F_{\mu\nu}(x) = A_\nu(x+\hat\mu) - A_\nu(x) - A_\mu(x+\hat\nu) + A_\mu(x) \\ & A_\mu(x) \to A_\mu(x) - \partial_\mu \chi & A_\mu(x) \to A_\mu(x) - \chi(x+\hat\mu) + \chi(x) \end{array}$$

 $F_{\mu\nu}$ invariant under U(1) gauge transformation

Results

Energy

Monte-Carlo algorithm used to run the simulation

Energy found by Kogut-Sinclair

Energy in my simulation

In continuum

$$W[\gamma] = \exp\{i \oint_{\gamma} A_{\mu}(x) dx^{\mu}\}$$

In continuum

$$W[\gamma] = \exp\{i \oint_{\gamma} A_{\mu}(x) dx^{\mu}\}$$

On the lattice (Kogut-Sinclair)

$$W[x] = \exp\left\{ie\sum_{t} \left[A_{4}(\mathbf{x}, t) - \left[\frac{1}{L^{3}}\sum_{\mathbf{y}} A_{4}(\mathbf{y}, t)\right]\right]\right\}$$

In continuum

$$W[\gamma] = \exp\{i \oint_{\gamma} A_{\mu}(x) dx^{\mu}\}$$

On the lattice (Kogut-Sinclair)

$$W[x] = \exp\left\{ie\sum_{t}\left[A_{4}(\mathbf{x},t) - \frac{1}{L^{3}}\sum_{\mathbf{y}}A_{4}(\mathbf{y},t)\right]\right\}$$
Net charge = 0

Wilson lines found by Kogut-Sinclair

Wilson lines in my simulation

Wilson lines found by Kogut-Sinclair

Wilson lines in my simulation

More statistics needed for e>1.5

Final recap

- Non-linear QED to explain soon within experimental reach non-perturbative phenomena;
- · Lattice approach is non perturbative, ideal to simulate non-linear QED;
- · Some thermalization issues still
- · Once the code is improved:
 - 1. Improved statistics;
 - 2. Phenomenological comparison between different theories.

Me in Zuerich

Professor Dr. Marina K. Marinkovic, my supervisor

Final recap

And many many thanks also to my co-supervisor Veronica Errasti Diez (LMU Munich - Excellence Cluster Origin)

Me in Zuerich

Professor Dr. Marina K. Marinkovic, my supervisor

Supplementary slides

Gauge fixing

The Landau gauge is imposed:

$$\sum_{\mu} \left(A_{\mu}(x + \hat{\mu}) - A_{\mu}(x) \right) = 0 \tag{1}$$

Two different gauge fixing method used:

Gauge fixing

The Landau gauge is imposed:

$$\sum_{\mu} \left(A_{\mu}(x + \hat{\mu}) - A_{\mu}(x) \right) = 0 \tag{1}$$

Two different gauge fixing method used:

- 1. Relaxation
 - · Gauge fixing is equivalent to maximize the function $F^g[U] = \frac{1}{V}\operatorname{Re}\sum_x f^g(x)$
 - Value locally optimized, iteratively maximizing $f^g(\boldsymbol{x})$
 - · unitary transformations, $O(N^2)$

Gauge fixing

The Landau gauge is imposed:

$$\sum_{\mu} \left(A_{\mu}(x + \hat{\mu}) - A_{\mu}(x) \right) = 0 \tag{1}$$

Two different gauge fixing method used:

- 1. Relaxation
 - · Gauge fixing is equivalent to maximize the function $F^g[U] = \frac{1}{V} \operatorname{Re} \sum_x f^g(x)$
 - · Value locally optimized, iteratively maximizing $f^g(x)$
 - unitary transformations, $O(N^2)$
- 2. Since $\sum_{\mu} (A_{\mu}(x+\hat{\mu}) A_{\mu}(x)) = 0$ is a system of N linear equations it can be solved with an algorithm, which is O(N). The transformation is not unitary.

Relaxation method

Thermalization

Metropolis algorithm and heat bath

Steps of metropolis algorithm:

- 1. Start with a configuration X with energy E[X];
- 2. propose a new configuration X^\prime with energy $E[X^\prime]$;
- 3. if E[X'] < E[X] accept the new configuration;
- 4. if E[X'] > E[X] accept the new configuration with a probability of $e^{-\Delta E}$;
- 5. repeat.

Metropolis algorithm and heat bath

Steps of metropolis algorithm:

- 1. Start with a configuration X with energy E[X];
- 2. propose a new configuration X^\prime with energy $E[X^\prime]$;
- 3. if E[X'] < E[X] accept the new configuration;
- 4. if E[X'] > E[X] accept the new configuration with a probability of $e^{-\Delta E}$;
- 5. repeat.

Heat bath algorithm combines the steps of Metropolis: sample X directly according to the probability distribution

$$dP(X) = dXexp(-E[X])$$

Heat bath method

Thermalization