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Motivation



Electrodynamics
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https://www.bem.fi/library/1865-001.pdf

Electrodynamics

[James Maxwell, 1865]
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https://www.bem.fi/library/1865-001.pdf

Electrodynamics

Richard Feynman (in picture), Sin-Itiro Tomonaga
and Julian Schwinger were awarded the Nobel
[James Maxwell, 1865] Prize in 1965
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https://www.bem.fi/library/1865-001.pdf

Non-linear extensions of QED
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https://inspirehep.net/literature/1103928
https://royalsocietypublishing.org/doi/10.1098/rspa.1934.0059

Non-linear extensions of QED

An infinitely populated class of theories [Plebanski, 1968]
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Non-linear extensions of QED

An infinitely populated class of theories [Plebanski, 1968]
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£=—7FuF* + f(Fu)

The most well known example: Born-Infeld [Born & Infeld, 1934]
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Non-linear extensions of QED

An infinitely populated class of theories [Plebanski, 1968]
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£=—7FuF* + f(Fu)

The most well known example: Born-Infeld [Born & Infeld, 1934]
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Fu(z) = 0,A, — 0,4, F#V = %EWMFPU
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Coming soon
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https://arxiv.org/abs/2102.02032
https://arxiv.org/abs/2102.02032
https://arxiv.org/abs/2005.12913

Lattice
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For the Italian speakers:
NOT the theory of
mattresses
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Lattice approach

What's a lattice?

"Discretized” space-time
[Grattringer & Lang, Springer Berlin,
2010]
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Lattice approach

What's a lattice?
"Discretized” space-time
[Grattringer & Lang, Springer Berlin,
2010]
- L points per dimension,
a is the space between two
points;

714


https://inspirehep.net/literature/841572
https://inspirehep.net/literature/841572

Lattice approach

What's a lattice? P(x)

"Discretized” space-time \

[Grattringer & Lang, Springer Berlin, * * * * *7
2010]

- L points per dimension,
a is the space between two
points;

- 4. quarks, electrons;
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Lattice approach

Fur(%)
What's a lattice? P(x)
"Discretized” space-time \
[Grattringer & Lang, Springer Berlin, * * * B
2010]

- L points per dimension,
a is the space between two
points;

- 4. quarks, electrons;

- the field 4, links two points;
- F,, is called "plaquette”; ® ® ® ® ® —
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Lattice approach

Fuy(%)
P(x)

N\
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- Non-perturbative
approach;

[ 2 4 \ 4
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Lattice approach

Fur(x)
P(x)
_ \ ¢ L 2 L =
- Non-perturbative
approach;
pproach > ¢ o
- Wick rotation:
t—1 ., — 1, "classical”
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Lattice approach

Fur(X)
P(x)
_ \ ¢ L 2 L =
- Non-perturbative
approach;
pproach > ¢ o
- Wick rotation:
t—1 ., — 1, "classical”
T G 7 —o—9o—o—9¢ — |
partition function;
- Periodic boundary . ‘M‘
conditions; * *
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Born-Infeld on a lattice

Only one simulation done so far, in 2005 [Kogut-Sinclaire, 0509097 [hep-lat]]
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https://arxiv.org/abs/hep-lat/0509097

Born-Infeld on a lattice

Only one simulation done so far, in 2005 [Kogut-Sinclaire, 0509097 [hep-lat]]

Action:
S =b? /d%

Continuum Discrete

[d*z jg:

T

16b*

1 1 -

How to discretize?

Fu(@) = 0, A, — 0,A, | Fu(@) = Ay(e + 1) — Ay(2) = Au(a+ ) + A, ()

Ap() = Au(z) = Gux Ap(r) = Au(z) = x(z + p) + x(2)

9/ 14


https://arxiv.org/abs/hep-lat/0509097

Born-Infeld on a lattice

Only one simulation done so far, in 2005 [Kogut-Sinclaire, 0509097 [hep-lat]]

Action:
S =b? /d%

How to discretize?

1 1 N
14+ —F, Fw 4+ —F, Fmw —1
\/ + 2p2 ! + 1604/ 1

Continuum Discrete

[d*z Z

T

Fu(@) = 0, A, — 0,A, | Fu(@) = Ay(e + 1) — Ay(2) = Au(a+ ) + A, ()

Au(z) = Au(x) — Oux Aux) = Ap(z) = x(z +0) + x(x)
F,,, invariant under U(1) gauge transformation
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Results




Monte-Carlo algorithm used to run the simulation
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In continuum

W] —exp{ ¢, Aul dx“}
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In continuum

W] —exp{ ¢, Aul dx“}

On the lattice (Kogut-Sinclair)

Wiz] = exp{iez |:A4(x,t) — %Zz‘h(y,t) l }
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In continuum

W] —exp{ ¢, Aul dx“}

On the lattice (Kogut-Sinclair)

Wiz] = exp{iez |:A4(x,t) — %Zz‘h(y,t) l }
A

Net charge =0
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Wilson line
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Wilson lines in my simulation



Wilson line
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More statistics needed fore > 1.5
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- Non-linear QED to explain soon within experimental reach non-perturbative

phenomena;
- Lattice approach is non perturbative, ideal to simulate non-linear QED;
- Some thermalization issues still
- Once the code is improved:
1. Improved statistics;
2. Phenomenological comparison between different theories.

. Me in Zuerich Professor Dr. Marina K. Marinkovic, my supervisor



And many many thanks also to my co-supervisor Veronica Errasti Diez (LMU Munich -
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Me in Zuerich Professor Dr. Marina K. Marinkovic, my supervisor
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Gauge fixing

The Landau gauge is imposed:

Y (Au(z+p) = Au(x) =0 (1)

m

Two different gauge fixing method used:
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The Landau gauge is imposed:
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Two different gauge fixing method used:

1. Relaxation
- Gauge fixing is equivalent to maximize the function F9[U] = & Re ) f?(x)
- Value locally optimized, iteratively maximizing f(z)
- unitary transformations, O(N?)



Gauge fixing

The Landau gauge is imposed:

Y (Au(z+p) = Au(x) =0 (1)

n
Two different gauge fixing method used:

1. Relaxation

- Gauge fixing is equivalent to maximize the function F9[U] = & Re ) f?(x)

- Value locally optimized, iteratively maximizing f(z)
- unitary transformations, O(N?)

2. Since 3, (Au(z + ) — Au(x)) = 0 is a system of N linear equations it can be solved
with an algorithm, which is O(N). The transformation is not unitary.



Relaxation method

Thermalization eloxation, L=8 Thermalization eloxation,
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Thermalization



Metropolis algorithm and heat bath

Steps of metropolis algorithm:

1. Start with a configuration X with energy E[X];

2. propose a new configuration X’ with energy E[X'];

3. if E[X’] < E[X] accept the new configuration;

4. if E[X'] > E[X] accept the new configuration with a probability of e=2F;
5

. repeat.



Metropolis algorithm and heat bath

Steps of metropolis algorithm:

1.

Start with a configuration X with energy E[X];

2. propose a new configuration X’ with energy E[X'];
3. if E[X’] < E[X] accept the new configuration;

4,
5

if E[X'] > E[X] accept the new configuration with a probability of e=2F;

. repeat.

Heat bath algorithm combines the steps of Metropolis: sample X directly according to
the probability distribution

dP(X) = dXexp(—E[X])



Heat bath method

Thermalization beta=1, L=8, heat bath
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