Using pileup in search of new physics

Antti Pirttikoski, Carlos Moreno Martinez, <u>Mário Cardoso</u>, Steven Schramm, Vilius Čepaitis

Established by the European Commission

FNSNF

Fonds national suisse Schweizerischer Nationalfonds Fondo nazionale svizzero Swiss National Science Foundation CHIPP

Friday, 20 January 2023

Turning noise into data: pileup collisions

- Standard: one collision of "interest" and 18 pileup collisions (seen as noise to be rejected).
- Each proton-proton collision is independent.
 - If we are able to reconstruct the pileup collisions separately, we can build trigger-unbiased data.
- Pileup can then be used as a minimum bias dataset.
 - This is useful when the pileup dataset is larger than the triggered dataset.

•
$$\mathcal{L}_{int}^{pileup} \approx \mathcal{L}_{int}^{LHC} \times \frac{\text{data recording rate}}{LHC \text{ collision rate}}$$

- Run 2 data recording rate \approx 1 kHz
- LHC collision rate ≈ 30 MHz
- \rightarrow Run 2 $\mathcal{L}_{int}^{pileup} \approx 5 \ pb^{-1}$
- Small compared to 140 pb^{-1} .
 - However, it still amounts to a lot of data:

 $\sigma(W^{\pm})\approx 10^4\,{\rm pb}\implies 5\times 10^4~W^{\pm}$

• Competing constraints: physics of interest must have a very low trigger acceptance, but must have a large cross-section, to be seen in pileup.

Cross-sections from <u>SM summary plot</u>

- First we need to consider the acceptance of the ٠ relevant trigger (for us is the HLT single-jet).
- For single-jet trigger users, pileup dataset is best ٠ for $p_T \lesssim 80 \ GeV$.
 - Comparable to using triggers for 80 GeV \leq $p_T \lesssim 110 \ GeV$.
- Triggered searches have to consider efficiency. ٠
 - No such constraints in pileup. ٠
 - The pileup scales linear with luminosity. ٠ Relevance grows with pileup.

- Jet calibrations
- Dijet resonance searches
- Much more!
- However, first we need to reconstruct the data!

- New analysis strategy due to huge increase in statistics compared to standard approach.
 - This is possible due to increased LHC pileup levels and advanced understanding of jet reconstruction.
- Need of planning new reconstruction approaches.
- New nomenclature.
- Checking the non-bias between proton-proton collisions.
 - Each proton-proton collision may be independent, but we need to make sure the trigger decision comes from a single collision, and remove that one.

- At the low p_T region we have a lack of statistics.
 - This is where our pileup data will be able to help us!
 - We get more sensitivity for the low-energy regime compared to complementary searches.

 J_3

- Using pileup collisions gives a big increase in the available statistics at low-energy and is competitive for DM mediators up to 200 GeV.
 - In this region is where we have the W/Z boson, so we are able to validate our technique.
- Beyond dijet resonances, can consider higher multiplicity final states: a lot of new physics models (Composite Higgs model, Strongly coupled dark matter, ...).

- Most of ATLAS reconstruction is oriented around the single PV mentality
 - We present an alternative: using pileup collisions to create a minimum bias dataset.
 - For this we need a new event reconstruction strategies: vertex-by-vertex reconstruction.
- The project focus on:
 - Searches for weakly-interacting low-energy hadronic physics
 - Linking to Dark Matter, Higgs mass and more generic searches.
 - High-statistics data analysis.
 - Machine learning applications.

This result is part of a project that has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (Grant agreement No. 948254).