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What is machine learning?
Giving computers the ability to learn without 

explicitly programming them 
- Arthur Samuel, 1959

The goal of machine learning (ML) is to predict results based on incoming 
data. 

• Study of computer algorithms that can improve through the use of data
• A part of the field of artificial intelligence
• Statistics and algorithms
• Computer science and optimization techniques

Mathematical models learnt from data that characterize the patterns, 
regularities, and relationships amongst variables in the system.

• Chosen model depends on the task / available data 
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Basic Terminology

Features (also parameters, or variables): these are the factors for a machine to 
look at. E.g.: cartesian coordinates, pixel colors, a car mileage, user's gender, 
stock price, word frequency in the text.

• Quantitative (x = {1.02, 0.21, 0.12, 2})

• Qualitative discrete (x = {medium, small, large}) or categorical (x={red, blue, 
green})

Algorithms (also models): Any problem can be solved in different ways. The 
method you choose affects the precision, performance, and size of the final model. 

• If the data is insufficient/inappropriate (e.g. statistically limited or missing 
important features), even the best algorithm won't help

• Pay attention to the accuracy of your results only when you have a good 
enough dataset
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Use labelled data (often simulation) to 
separate classes of objects. 

arXiv: 2006.05880 

https://arxiv.org/abs/2006.05880
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Learn patterns from the data, identify 
(interesting) outliers.

arXiv: 2007.01850

https://arxiv.org/abs/2007.01850
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Image: https://i.stack.imgur.com/eoeSq.png

10.1103/PhysRevAccelBeams.23.124801

Learn to make the best sequence of decisions (the policy) to 
achieve a given goal.

https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.23.124801
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And more…
Check out the Living Review of Machine Learning for Particle Physics 

Pile up mitigation

Event 
generation

Jet tagging

Unfolding

… and the list continues

https://iml-wg.github.io/HEPML-LivingReview/


Brief 
Statistics 
Refresher
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Frequentist probability

In frequentist statistics, probabilities are associated only with the data, i.e. 
outcomes of repeatable observations.

Probabilities such as 

• P (Higgs boson exists)

• P (0.117 < αs < 0.121)

are either 0 or 1, but we don’t know which. 

• The preferred theories (models, hypotheses, ...) are those for which our 
observations would be considered ‘usual’ 
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Probability models

A hypothesis H specifies the probability for the data x, i.e. the outcome of the 
observation.

• f(x|H) is the p.d.f. or probability model (or just model)

• f(x|H) could be uni-/multivariate, continuous or discrete

• f(x|H) could be the observation of a single particle, a single event, or an entire 
“experiment”
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Expected values

Expected value of a function of random variables: 

• Often we can’t compute this integral
• Or we just don’t know p(x)
• Can often be approximated with the sample mean  

Mean of a random variable:

Variance: 

Covariance of two variables:
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Estimators and parameter estimation

The central problem of statistics is to infer the properties of f(x) based on a sample 
of observations x = (x1 , … , xn).

• Specifically, one would like to construct functions of the xi to estimate the 
various properties of the p.d.f. f(x) 

• The parameters of a pdf are constants that characterize its shape, 
e.g. 

random variable       parameter 

•      ← estimators are written with a hat 

Estimator = typically the function of x1, ..., xn

Estimate = the value of the estimator with a particular data set
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Estimator properties

The estimates from each experiment repetition follow a p.d.f.:

We want small (or zero) bias (systematic error): 

• average of repeated measurements should tend to true value 

And we want a small variance (statistical error): 

• small bias & variance are in general conflicting criteria 
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Maximum likelihood estimators

The maximum likelihood (ML) estimators for the parameters are those which 
maximize the likelihood function.

• If the hypothesized θ is close to the true value, then we expect a high 
probability to get data like that which we actually found 

• ML estimators are not guaranteed to have any ‘optimal’ properties, (but in 
practice they’re very good)

Results with 
non-ML estimators
(parameters further 
away from real 
values)
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Example

Assume our data is distributed according 
to a Gaussian(μ,σ).

• Let’s compute the MLE for μ

• Find the minimum of the –ln L(x | μ,σ)

• The MLE estimator for μ is the sample mean
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Bayesian statistics

In Bayesian statistics, interpretation of probability extended to degree of belief 
(subjective probability).

• Bayesian methods can provide more natural treatment of non- repeatable 
phenomena: e.g. systematic uncertainties

• No golden rule for priors

posterior 
probability

Normalize over all possible hypotheses
(marginal probability P(x) )

prior 
probability,
does not 
depend on x

Probability of the data 
assuming the hypothesis H



Supervised
Learning
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Supervised learning

Design function with adjustable parameters.

Design a loss (sometimes called cost) function.

Optimise the parameters:

• Compare with labels to compute loss
• Adjust parameters to minimise loss
• Repeat until parameters stabilise

Data labels
Flower = 1
Car = 0

h(x,w)

Parametric 
function 

(adjustable)

L(w,x)
Loss 

function

Compare 
prediction 
with true 

labels
Adjust 

parameters

L(w,x)

w
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Empirically find the minimum loss 

Find best weights w to minimise the loss function.

• L loss to compare predictions h(x) with target y (the data labels)
• h(x, w) parameterized family of functions
• Ω(w) regularization to penalize certain values of w
• 𝜆 parameter to control penalty

This is a general framework to design learning algorithms.

• Use empirical estimate on data of loss
• Learning is an optimization problem
• Find solution over parameter space

Empirical loss
Regularisation
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Loss functions L(h(x,w),y)

Square Error:

• L = (h(x, w) - y)2 
• Often used in regression

Cross entropy:

• L = - y log h(x,w) - (1-y) log (1 - h(x,w)) 
with y ∈ {0,1} 

• Often used in classification 

Hinge:

• L = max(0, 1 - y h(x, w))
with y Î {-1,1} 

Zero-One (also called misclassification):

• L = 1y≠h(x,w)
with h(x; w) predicting label

Image from [1]

- Square error
- Cross entropy
- Hinge
- Zero-one
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Example: linear regression
The linear model is one of our most important tools in statistics.

• Given a vector of inputs XT
 = (X1, X2, ..., Xp), we predict the output Y via

• The term β0 is the intercept, also known as the bias in machine learning

How do we fit the linear model to a set of data?

• The most popular method is the method of least squares: pick the coefficients 
β to minimize the residual sum of squares (RSS)

• RSS(β) is a quadratic function of the parameters, and hence its minimum 
always exists, but may not be unique
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Linear regression

Data were simulated with 
outputs being either BLUE 
or ORANGE.

A linear regression model 
was fit to the data, used 
here as training dataset.

The fitted values Y are 
converted in a 
classification according to 

Image from [2]
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Example: nearest neighbor classifier

An alternative algorithm for classification is the method of nearest neighbors.

Nearest-neighbor methods use those observations in the training set closest in 
input space to x to form Y.

The k-nearest neighbor fit for Y is defined as: 

where Nk(x) is the neighborhood of x defined by the k closest points xi in the 
training sample.

Closeness implies a metric, which in our case we assume is Euclidean distance.

• In words, we find the k observations with xi closest to x in input space, 
and average their responses 
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Nearest neighbor classifier

Image from [2]
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Perfect classification?

Image from [2]
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Comparing classifiers

To compare the different 
algorithms, we can use the 
loss function.

• Here, we can use the 
rate of misclassifications

In order to compare the 
performances, we need to 
introduce an independent 
dataset, the test dataset.

Image from [2]
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Bias-variance tradeoff

The training error tends to decrease whenever we increase the model complexity, 
that is, whenever we fit the data harder.

• With too much fitting, the model adapts itself too closely to the training data, 
and will not generalize well (i.e., have large test error) 

• In contrast, if the model is not complex enough, it will underfit and may have 
large bias, again resulting in poor generalization

Image from [2]



Making a 
prediction
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Making a prediction
Assume that we want to separate data from two classes.  
Data from joint distribution (x, y):

• x ∈ Rn our features 
• y ∈ {0,1} our labels

The goal is to predict the class y at point x.

We can use the Bayes rule
to write the problem as 
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The logistic function
A logistic function or logistic curve 
is a sigmoid curve with equation:

The prediction (and a threshold) define 
a decision boundary to separate the classes.

Log likelihood 
ratio!

Does not 
depend on x



Page 32| CHIPP Winter School of Particle Physics  2023 | Federico Meloni, 17/01/2023

Example: gaussian likelihood

The sigmoid converts the distance 
from the boundary into a probability.

We can use this model as classifier.

• Can work also without gaussian 
assumption 

How to optimise (train) the model?

• find w and b that maximize 
likelihood of data 

• Use maximum likelihood 
This unit is the main building 
block of Neural Networks!

Likelihood ratio
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Gradient descent
After we designed a classifier, our task is to pick proper parameter values so 
that the model will react correctly to incoming signals.
• In most cases we can’t compute the (maximum) likelihood
• Define a loss function to measure how far the response is from the truth

Minimize loss by repeated gradient steps.

• Start with all parameters are assigned randomly

• After evaluating the model on the training
dataset, we can compute the loss

• Computing the gradient of the loss,
gives us a direction in which to tune the
parameters towards a local minimum

The process of correcting the parameters is 
called backpropagation of an error.
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Stochastic Gradient Descent

The total loss is composed of a sum over samples: 

Computing gradient grows linearly with N!

• Can become slow and resource expensive

(Mini-Batch) Stochastic Gradient Descent

• Compute gradient update using a random sample (small size batch)
• Gradient is unbiased and on average it moves in the correct direction
• Tends to be much faster than full gradient descent 
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Learning rate

The learning rate controls how big of a step is taken in the direction of the 
gradient. 

• If it is too small, the convergence is very slow
• If it is too large, the algorithm diverges 

Image credit: M. Kagan



Page 36| CHIPP Winter School of Particle Physics  2023 | Federico Meloni, 17/01/2023

Testing a model’s performance

Split dataset into multiple parts.

• Training set
• Used to fit model parameters

• Validation set
• Used to check performance on 

independent data and tune 
parameters

• Test set
• Final evaluation of performance 

after all hyper-parameters fixed

Sometimes, applying a transformation to 
the input variables can greatly simplify 
the problem (change of basis).
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Where are the fancy neural networks?
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Neural Networks

Any neural network is a collection of neurons and connections between them.

Neuron is a function with a set of inputs and one output. Its task is to take all 
numbers from its input, apply a function on them and send the result to the output.

• Example: sum up all numbers from the inputs and if that sum is bigger than N 
give 1 as a result. Otherwise return zero

Connections are like channels between neurons. They connect outputs of one 
neuron with the inputs of another so they can send digits to each other. Each 
connection has only one parameter the weight. 

• These weights tell the neuron to respond more to one input and less to 
another. Weights are adjusted when training
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Feed forward neural networks
We want to separate data in two classes and have a non-linear decision boundary, 
but don’t know which change of basis we should pick.

• Learn it from the data!
• We can stack several units to form a network (multi-layer perceptron MLP)

• Each layer adapts basis functions based on previous layer 
• No limit to the complexity of our model, apart from technical or practical ones 

(more units =  more parameters to find)

“Hidden” layer
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That pile of linear algebra

a0
(1) = f (w0,0 a0

(0) + w0,1 a1
(0) + … + w0,n an

(0) + b0)

layer

weights bias
activation
function
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Optimising a neural network

The same strategy we discussed before applies here too.

• Define a loss function (of weights and biases in the model)
• Sum losses for all neurons
• Minimise loss with respect to the values assigned to these parameters

Regression: Square error loss function.

• L = ½ ∑i (yi - h(xi, wi))
2 

Classification: cross entropy loss function.

• pi = p(yi=1 | xi) = 𝜎(h(xi))
• L = - ∑i yi log pi  - (1-yi) log (1 - pi ) 
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Vanishing gradients
The gradient is the value used to adjust the networks internal weights, 
allowing the network to learn.

• The bigger the gradient, the bigger the adjustments and vice versa 
• Small gradients slow limit the ability to learn! 

Gradients for layers far from the output vanish to zero. 

• In back propagation, each node in a layer calculates its gradient with respect 
to the effects of the gradients in the layer before it

• So if the adjustments to the layers before it is small, 
then adjustments to the current layer will be even smaller
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Activation functions

Sigmoid (but the problem applies 
to any bound function)

• Nearly 0 when x is far from 0
• Gradients are exponentially 

suppressed

Rectified Linear Unit (ReLU)

• ReLU(x) = max(0, x)
• Derivative is constant!
• ReLU gradient doesn’t vanish
• The base of modern NNs
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Universal approximation theorem

Feed-forward neural network with a single hidden layer containing a finite number 
of non-linear neurons (ReLU, Sigmoid, and others) can approximate continuous 
functions arbitrarily well on a compact space of R!

• This guarantees that even a single hidden-layer network can represent any 
classification problem in which the boundary is smooth

Beware:

• It does not inform about good/bad architectures, nor how they relate to the 
optimization procedure.

• A better approximation requires a larger hidden layer
• The training error can be arbitrarily small with a larger hidden layer
• Doesn’t say how to find the parameters for this approximation
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Going deeper

As data complexity grows, need exponentially large number of neurons in a 
single-hidden-layer network to capture all structure in data.

• Deep NNs factorize the learning of structure in data across many layers
• Difficult to train
• Recent developments in computing (GPU, TPU) and training procedures 

made this possible
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Convolutional neural networks

When the structure of data includes “invariance to translation”, a representation 
meaningful at a certain location can be used everywhere.

• Convolutional layers build on this idea, that the same “local” transformation is 
applied everywhere and preserves the signal structure

If they were handled as normal "unstructured" vectors, high-dimensional signals 
such as images would require models of intractable size.
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How does a CNN work?

Scan across data and multiply by 
kernel (filter) elements.

Several filters can be applied to 
the image.

• In this way, we can detect 
different patterns

• The activation maps can then 
be used as inputs for a fully 
connected layer

The procedure can be generalised 
to higher dimensional filters.

Activation 
map

Input
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Reducing the input dimension: pooling

In each channel, find max or 
average value of pixels in a pooling 
area.

● Invariance to permutation within 
pooling area

● Invariance to local perturbations 

Both techniques reduce the noise 
and the dimension of the picture.

A convolutional network is 
generically defined as a composition 
of convolutional layers, pooling 
layers, linear rectifiers and fully 
connected layers.
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CNNs in ATLAS: pile-up mitigation
ATL-PHYS-PUB-2019-028

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2019-028/
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Recurrent Neural Networks

Many types of data are not fixed in size.

• However they have a temporal or sequence-like structure
• Text
• Video
• Speech
• DNA

• MLP expects fixed size data 

How to deal with sequences?

• Add a loop in the neural network that can pass 
prior information forward

• This information is the hidden state, which is a 
representation of previous inputs

As the RNN processes more steps, it has troubles 
retaining information from previous steps (vanishing gradient problem).
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LSTMs and GRUs

LSTMs and GRUs were created as the solution to short-term memory. 

• They have internal mechanisms called gates that can regulate the flow of information
• These gates can learn which data in a sequence is important to keep or throw away
• By doing that, it can pass relevant information down the long chain of sequences to 

make predictions

Image credit: Michael Phi

https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21
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RNN in ATLAS: flavour tagging
ATL-PHYS-PUB-2017-003

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2017-003/
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Unsupervised learning: autoencoders

Not all tasks are predicting a label from features:

• Data synthesis / simulation
• Anomaly detection
• Denoising
• ...

Are all examples that require unsupervised learning.

Model the “meaningful degrees of freedom” describing the data.

• Compress the data to a latent space with smaller number of dimensions
• Latent space must encode and retain the important information about the data 

(we can reconstruct original data from latent space)
• Can we learn this compression and latent space?
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Autoencoders
Autoencoders map a space to itself through a compression. 

Encoder: map from to a lower dimensional latent space z.

• Neural network f(x)

Decoder: map from latent space z back to data space x.

• Neural network g(z)

f(x) and g(z) can have any structure (fully connected, CNNs, RNNs, … )

• Choice of network structure will depend on the problem 
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Autoencoders in HEP: anomaly detection
arXiv: 2007.01850

Generation via sampling 
of latent space

Classification in latent 
space (QCD, W, top)

Anomaly score as 
discriminant

https://arxiv.org/abs/2007.01850
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Generative Adversarial Networks

Generative modeling task as a two player game.

• One player tries to output data that looks as real as possible
• Another player tries to compare real and fake data

Generator network g(x).

• Map sample from known f(x) to sample in data space
• We don’t know what the learned distribution is, but we can sample from it

Discriminator Network d(x).

• Distinguish between real and fake data
• Learning to predict p(input = real | x)
• Classifier is our measure of “distance” from the real data 
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GAN objectives

For fixed g(x), can train d(x) (by minimizing the binary cross entropy).

• But the generator is not fixed, it can/must be trained

Consider objective as a value function of 𝜙 and 𝜃 (the params of d and g).

• For fixed generator, 𝑉(𝜙, 𝜃) is high when discriminator is good
• For perfect discriminator, 𝑉(𝜙, 𝜃) is low when generator is good

The optimization goal becomes: arg min𝜃 max𝜙 𝑉(𝜙,𝜃).

• Alternating gradient descent to solve the min-max problem for g(x) and d(x)
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Challenges of GANs
• Lack of convergence: unlike standard loss minimization, alternating stochastic 

gradient descent has no guarantee of convergence.

• Vanishing gradients: if classifier is too good, value function saturates and no 
gradient to update generator 

• Mode collapse: generator models only a small sub-population, concentrating 
on a few data distribution modes.

• Difficult to assess performance: is generated data good enough?

Would think it’s a real cat Partly-molten cat

www.thiscatdoesnotexist.com 

http://www.thiscatdoesnotexist.com
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GANs in ATLAS: fast shower simulation
ATL-SOFT-PUB-2018-001

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-SOFT-PUB-2018-001/
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Summary

Machine learning uses mathematical and statistical models learned from data to 
characterize patterns and relations between inputs, and use this for inference / 
prediction.

Machine learning comes in many forms, much of which has probabilistic and 
statistical foundations and interpretations.

Deep neural networks are extremely powerful and can be combined to serve 
disparate goals, from image classification to event generation.



Thank you!
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Useful references

[1] C. M. Bishop, Pattern Recognition and Machine Learning, 2006

[2] T. Hastie, R. Tibshirani, J, Friedman, The Elements of Statistical Learning (2nd 
ed.), Springer Series in Statistics, 2001

• http://scikit-learn.org/  
• Machine learning sw (python based): TensorFlow, PyTorch, …

(fun ML playground http://playground.tensorflow.org)

Many excellent courses and documentation available online:

• Lectures from Machine Learning Summer School (MLSS)
• Francois Fleuret course at University of Geneva
• Gilles Louppe course at University of Liege
• Michael Kagan’s lectures at CERN-Fermilab HCP Summer School

I took from several of these references to prepare these slides.

http://scikit-learn.org/
http://playground.tensorflow.org/#activation=tanh&batchSize=10&dataset=circle&regDataset=reg-plane&learningRate=0.03&regularizationRate=0&noise=0&networkShape=4,2&seed=0.50781&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false
https://ai.ntu.edu.tw/mlss2021/schedule/
https://fleuret.org/dlc/
https://github.com/glouppe/info8010-deep-learning
https://indico.cern.ch/event/1023573/

