Lecture at the CHIPP Winter School 2023 - Leukerbad, Paolo Crivelli (ETHZ)
Low energy particle physics

Content of the lecture

- The limits of the Standard Model
- Low energy vs LHC physics
- Searches of SUSY and cLFV at the high intensity/low energy frontier
- Dark matter searches at the high intensity/low energy frontier
- Inspecting the matter-antimatter asymmetry with anti-hydrogen

The Standard Model

- The standard Model is a very powerful and successful theory describing the electromagnetic, weak and strong interactions between elementary subatomic particles (gravity is not included).

- It has demonstrated large and continued success in predicting experimental observables, such as the top quark, the W, Z and the Higgs bosons \rightarrow powerful predictions via radiative loops.

The short comings of the Standard Model

- The Standard Model has fallen short in anticipating neutrino masses and oscillations, the existence of Dark Matter and the apparent Baryon- antiBaryon asymmetry.
- It might be perceived as having too much arbitrariness and fine-tuning (how to fix the input parameters?)
- Charge quantization unexplained (charge electron vs proton)
- Fermion masses, mixings, families unexplained
- Higgs/hierarchy problem
- Strong CP problem
- Gravity not unified

The short comings of the Standard Model

- The Standard Model has fallen short in anticipating neutrino masses and oscillations, the existence of Dark Matter and the apparent Baryon- antiBaryon asymmetry.
- It might be perceived as having too much arbitrariness and fine-tuning (how to fix the input parameters?)
- Charge quantization unexplained (charge electron vs proton)
- Fermion masses, mixings, families unexplained
- Higgs/hierarchy problem
- Strong CP problem

BSM Physics required!

- Gravity not unified

Complementary strategies for BSM searches

High-energy collisions

real ("on-shell") particle of mass M

on-shell particles limited by kinematical threshold:

$$
\left(M c^{2}\right)<E_{c m s}
$$

Rare/New processes
virtual ("off-shell") particle of mass M

off-shell particles sensitivity limited by rarity of process:

$$
\left(M c^{2}\right) \Delta t \gtrsim \hbar
$$

Some examples from the past

What was the BSM physics discovered in 1947?

The "birth" of Quantum Electrodynamics (QED)

Dirac theory great success in predicting many phenomena of atomic physics. Is the electron a "point-like Dirac particle" with $\mathrm{g}=2$?

- Nafe, Nelson, and Rabi (1947) obtained precision measurements of the hyperfine structure intervals in hydrogen and deuterium: 0.2\% discrepancy from predictions based on $\mathrm{g}=2 \rightarrow$ Dirac theory of the electron no longer completely satisfactory \rightarrow need to apply QED corrections
- Lamb and Retherford (1947): measured the energy splitting between the $2 \mathrm{~S}_{1 / 2}$ and $2 \mathrm{P}_{1 / 2}$ in Hydrogen (this is predicted to be zero by Dirac's theory!)

Realization that Dirac theory not sufficient BSM physics required \rightarrow QED

Reminder - The hydrogen atom

- The atomic gross structure of the atomic energy levels is given by the Bohr and the Schrödinger equation (SEQ)

$$
\frac{p^{2}}{2 m_{e}}+V(r)=E \quad \rightarrow \quad\left[\frac{\hbar^{2} \Delta}{2 m_{e}}+V(r)\right] \Psi=E \Psi
$$

- Coulomb-potential: $\quad V(r)=-\frac{1}{4 \pi \epsilon_{0}} \frac{Z e^{2}}{r}$
- First (non-relativistic) correction: finite mass of the nucleus taken into account by reduced mass:

$$
m_{\mathrm{R}}=\frac{M m}{M+m}
$$

Bohr

- The gross eigenenergies are: $\quad E_{n}=-\frac{(Z \alpha)^{2} m_{\mathrm{R}} c^{2}}{2 n^{2}}$

Leading relativistic Dirac correction

Spectroscopic notation

orbital angular momentum

letter	name	I
s	sharp	0
p	principal	1
d	diffuse	2
f	fundamental	3
g		4
h		5

alphabetical

H $\alpha / \mathbf{D} \alpha$ Balmer absorption lines

Balmer α line $n=3 \rightarrow n=2$

EHIzürich

H $\alpha / \mathbf{D} \alpha$ Balmer absorption lines

Careful inspection of spectral lines of atomic hydrogen and deuterium obtained by traditional absorption spectroscopy.

- Components (1) and (2) are from the fine splitting.
- The 3rd line at position (3) suggested that Dirac theory must be revised (before World War II).
- Final confirmation in 1947 using resonant spectroscopy (Lamb)

The Lamb shift (QED effect)

- The leading QED effect in conventional atoms is by the self energy contribution
- A virtual photon can be emitted and re-absorbed by the bound electron

Bohr

- This fluctuation of the EM-field can be pictured as perturbing the electron orbit and therefore shifting the energy levels.

Willis Lamb

> Willis E. Lamb, Jr.

Fine structure of the hydrogen atom

Nobel Lecture, December 12, 1955

When the Nobel Prizes were first awarded in 1901, physicists knew something of just two objects which are now called «elementary particles »: the electron and the proton. A deluge of other «elementary» particles appeared after 1930; neutron, neutrino, μ meson, π meson, heavier mesons, and various hyperons. I have heard it said that « the finder of a new elementary particle used to be rewarded by a Nobel Prize, but such a discovery now ought to be punished by a $\$ 10,000$ fine ».

Willis Eugene Lamb 1913-2008
American physicist

Lamb shift measurement (1947)

- Basic idea: produce beam of hydrogen atoms in the metastable 2 S state by bombarding ground state atoms with electrons.

$$
\tau_{2 S} \simeq 10^{8} \mathrm{~ns}=100 \mathrm{~ms}
$$

- The atoms in the $2 S$ impinging on metal surface release electrons that can be detected with an electrometer while this process does not occur for the atoms in the ground state (1S).

Lamb shift measurement (1947)

- RF field: on resonance frequency induce transition from the $2 S$ to the 2 P state.

- The 2P state decays quickly to the $1 \mathrm{~S} \rightarrow$ signal in the electrometer will decrease

Lamb shift measurement (1947)

RESONANCE : Applying the correct RF field at the resonance frequency one can induce transition from the 2 S to the 2 P state. The 2 P state decays quickly to the ground state (in about 1 ns) and therefore the signal in the electrometer will decrease.

Hyperfine splitting and nuclear effects

Lamb shift 2019

A measurement of the atomic hydrogen Lamb shift and the proton charge radius

N. Bezginov ${ }^{1}$, T. Valdez ${ }^{1}$, M. Horbatsch ${ }^{1}$, A. Marsman ${ }^{1}$, A. C. Vutha ${ }^{2}$, E. A. Hessels ${ }^{1, *}$

+ See all authors and affiliations

Science 06 Sep 2019:
Vol. 365, Issue 6457, pp. 1007-1012 DOI: 10.1126/science.aau/807

Lamb shift 2019

A measurement of the atomic hydrogen Lamb shift and the proton charge radius
N. Bezginov ${ }^{1}$, T. Valdez ${ }^{1}$, M. Horbatsch ${ }^{1}$, A. Marsman ${ }^{1}$, A. C. Vutha ${ }^{2}$, E. A. Hessels ${ }^{11, *}$

+ See all authors and affiliations
Science 06 Sep 2019:
Vol. 365, Issue 6457, pp. 1007-1012
DOI: 10.1126/science.aau7807

The anomalous magnetic moment

Dirac theory predicts a g-factor of $\quad g_{\text {Dirac }}=2$
Magnetic moment of a Dirac particle: $\quad \vec{\mu}_{\text {Dirac }}=g_{\text {Dirac }} \mu_{B} \vec{S}$

Interaction of magnetic moment with external magnetic field $\overrightarrow{\mathrm{B}}$ with $g=2$: consequence of Dirac equation

BUT QED radiative corrections alter this
result which is true only for a "bare" point-like Dirac particle!
"Dirac Interaction" $g=2$

QED "Schwinger Interaction" $(\mathrm{g}-2)=\alpha / \pi$

Adding more corrections...

Dirac
(a)

Schwinger
(b)

(c)

- Dyson (1949) showed that Schwinger's theory could be extended to permit calculation of higher-order corrections to the properties of quantum systems. Dyson was able to simplify the procedure, devise an unambiguous program for obtaining the nth-order contribution to any quantity which can be calculated using QED, and show that these contributions would remain finite to arbitrary order in a, e.g.

$$
a_{e}(\text { theo })=A_{E}\left(\frac{\alpha}{\pi}\right)+B_{e}\left(\frac{\alpha}{\pi}\right)^{2}+C_{e}\left(\frac{\alpha}{\pi}\right)^{3}+D_{e}\left(\frac{\alpha}{\pi}\right)^{4}+E_{e}\left(\frac{\alpha}{\pi}\right)^{5}+\ldots
$$

...and few ten thousands more

For example: few of the ten thousand diagrams evaluated for the electron g-2

GIHzürich

... and few ten thousands more

Physics Letters B Volume 772, 10 September 2017, Pages 232-238

Table 1. First 1100 digits of $a_{e}^{(4)}$
-1.9122457649264455741526471674398300540608733906587253451713298480060
3844398065170614276089270000363158375584153314732700563785149128545391 9028043270502738223043455789570455627293099412966997602777822115784720 3390641519081665270979708674381150121551479722743221642734319279759586 0740500578373849607018743283140248380251922494607422985589304635061404 9225266343109442400023563568812806206454940132249775943004292888367617 4889923691518087808698970526357853375377696411702453619601349757449436 1268486175162606832387186747303831505962741878015305514879400536977798 3694642786843269184311758895811597435669504330483490736134265864995311 6387811743475385423488364085584441882237217456706871041823307430517443 0557394596117155085896114899526126606124699407311840392747234002346496 9531735482584817998224097373710773657404645135211230912425281111372153 0215445372101481112115984897088422327987972048420144512282845151658523 6561786594592600991733031721302865467212345340500349104700728924487200 6160442613254490690004319151982300474881814943110384953782994062967586
7875385249781946989793132162197975750676701142904897962085050785592...

Measurement of the anomalous magnetic moment

Two distinct experimental techniques developed to precisely measure the g-factor:
(1) "precession experiments": direct observation of spin precession of polarized electrons or muons in a magnetic field;
(2) "resonance experiments": oscillating electromagnetic field inducing transitions between energy levels of the electron interacting with a static magnetic field.

Precession experiments

Particle of rest mass m and charge e moves with velocity \vec{v} in a constant magnetic field $\overrightarrow{\mathrm{B}}$. The orbital motion is a uniform rotation at the cyclotron frequency

$$
\omega_{c} \equiv \frac{\omega_{0}}{\gamma} \quad \text { where } \quad \omega_{0} \equiv \frac{e B}{m}
$$

Joseph Larmor (1857-1942)
Northern Irish physicist
and mathematician
Spin motion, as viewed from the laboratory frame, is a uniform Larmor precession at the frequency

Llewellyn Hilleth Thomas (1903-1992),
British physicist and applied mathematician

Thomas precession frequency due to acceleration of the circular motion.

Precession experiments - relative precession

- We consider the relative precession frequency of the spin relative to the cyclotron:
spin cyclotron

$$
\omega_{D} \equiv \omega_{s}-\omega_{c}
$$

- We have: $\quad \omega_{D}=\frac{g}{2} \gamma \omega_{c}+(1-\gamma) \omega_{c}-\omega_{c}=\left(\frac{g}{2}-1\right) \gamma \omega_{c}$
- Using $\omega_{c} \equiv \frac{\omega_{0}}{\gamma} \quad$ we have: $\omega_{D}=\left(\frac{g}{2}-1\right) \gamma \frac{e B}{\gamma m} \equiv a \omega_{0}$
where we define the anomalous magnetic moment:

$$
a \equiv \frac{g}{2}-1=\frac{(g-2)}{2}
$$

No Lorentz factor!

Anomalous magnetic moment

- We have found that the anomalous magnetic moment can be measured from the relative precession frequency:

$$
\omega_{D} \equiv a \omega_{0} \quad a \equiv \frac{g}{2}-1=\frac{(g-2)}{2}
$$

For a point-like Dirac particle: $\mathrm{g}=\mathbf{2} \rightarrow \mathrm{a}_{\text {Dirac }}=0$!
This is great but what makes this result even more fantastic is that the relative precession frequency is independent of $\gamma \rightarrow$ a can be measured without first order correction to the velocity.

$$
\omega_{0} \equiv \frac{e B}{m} \quad \begin{aligned}
& \text { Lorentz factor affects identically } \\
& \text { cyclotron and spin precession! }
\end{aligned}
$$

EHIzürich

Schematic of a precession experiment

Polarized source of electrons stored in constant magnetic field for a time T after which they are analysed by a polarimeter.

Accuracy $\sim T \rightarrow$ increase time particle spends in \vec{B} field. In a real experiment, \vec{B} never "exactly constant" and \vec{E} fields necessary to guide particles in desired direction. Trajectory: Lorentz force plus spin precession (Bargmann-Michel-Telegdi equations)

Theory vs Experiment - electron

In order to match the current experimental precision $\quad a_{\mathrm{e}}\left(\alpha_{\text {LKB2202 }}\right)=\frac{g_{\mathrm{e}}-2}{2}=1,159,652,180.252(95) \times 10^{-12}$.
\rightarrow theoretical value up to fifth term in the Dyson expansion since $(\alpha / \pi)^{5} \simeq 0.07 \times 10^{-12}$. At this level of precision contributions from three types of interactions: electromagnetic, hadronic, and electroweak.
4th term: 891 Feynman diagrams, 5th term: 12672 diagrams (evaluated numerically)

$$
a_{e}(\text { theo })=0.001159652181643(25)_{D_{e}}(23)_{E_{e}}(16)_{h a d r+E W}(763)_{\alpha}
$$

> Today theory and experiment are in good agreement at this fantastic precision! Maybe with more precision some deviations from QED could hint at new physics at very high energy. But so far this is not the case.

Theory vs Experiment - muon

New physics (see later) or problem with calculation of hadronic corrections*?
*Hadronic corrections to be directly measured by MUonE EXP @ CERN G. Abbiendi. PoS ICHEP2020, 223 (2021)

Back to the Standard Model...

How to fix the input parameters?

How many free parameters do we have in the Standard Model?

A) 18
B) 12
C) 26
D) 32

EHIzürich

Free parameters in the Standard Model

- 6 quark masses
- 6 lepton masses
- Higgs mass + vacuum expectation value (v)
- 3 gauge couplings (e, $\sin ^{2} \theta_{W}, g_{s}$),
- 3 CKM rotation angles, 1 CP violation phase,
- 3 PNMS rotation angles, 1 CP violation phase,
- θ parameter [strong CP violation]

TOTAL: 26

Those parameters are not predicted by the theory but need to be determined experimentally! Many of them through low energy particle physics experiments!

Charge renormalization -> Running of the coupling of constants

- Problem for evaluation of loop or higher order diagrams \rightarrow divergent amplitudes

> E.g. photon propagator in QED

$$
\Pi_{1 L}^{\alpha \beta}(k) \propto \int d^{4} p \frac{p^{2}}{p^{4}} \propto \int d^{4} p \frac{1}{p^{2}} \propto \int p^{3} \mathrm{~d} p \frac{1}{p^{2}} \propto p^{2} \rightarrow \infty
$$

This is called the ultra-violet divergence of QED

GIHzürich

Running of the coupling of constant in QED

- Renormalization: divergent integrals regularized by absorbing them into definition of bare parameters of theory \rightarrow new scale μ and higher order corrections for given scale Q^{2} relative to μ

QED Running of α

$$
\alpha\left(Q^{2}\right)=\frac{\alpha\left(\mu^{2}\right)}{1-\frac{\alpha\left(\mu^{2}\right)}{3 \pi} \ln \left(\frac{Q^{2}}{\mu^{2}}\right)}
$$

At relatively "small"
$1 k^{2} \mid$, photon probes the shielded charge

At "larger" |k², photon probes more of naked charge \rightarrow electric charge we see increases with k^{2}
k^{2} : "resolution" of the probing photon ($\lambda \sim 1 / p$)

EHIzürich

Running of the coupling of constant in QED

Verified experimentally

* In QED, running coupling increases very slowly
- Atomic physics: $\quad Q^{2} \sim 0$

$$
1 / \alpha=137.03599976(50)
$$

-High energy physics:

$$
1 / \alpha(193 \mathrm{GeV})=127.4 \pm 2.1
$$

EHIzürich

Running of the coupling of constant in QCD

QCD Similar to QED but also have gluon loops

- Fermionic and bosonic enter with opposite sign! Competing contributions in total amplitude!
Running of α_{s}

$$
\alpha_{s}\left(Q^{2}\right)=\frac{\alpha_{s}\left(\mu^{2}\right)}{1+\alpha_{s}\left(\mu^{2}\right) \frac{\beta_{0}}{4 \pi} \ln \left(\frac{Q^{2}}{\mu^{2}}\right)}
$$

$$
\beta_{0}=\frac{11 N_{C}-2 N_{f}}{3}\left\{\begin{array}{l}
N_{c}=\text { no. of colours } \\
N_{f}=\text { no. of quark flavours }
\end{array}\right.
$$

EHIzürich

Running of the coupling of constant in QCD

For $\mathrm{N}_{\mathrm{C}}=3$ and $\mathrm{N}_{\mathrm{f}} \leq 16$ quarks, $\beta_{0}>0$ and hence α_{s} decreases with increasing Q^{2}. This is also very well experimentally verified.
\star Measure α_{s} in many ways:

- jet rates
- DIS
- tau decays
- bottomonium decays
- +...
* As predicted by QCD, α_{s} decreases with Q^{2}

EHIzürich

Running of the coupling of constants

- QED coupling constant grows with energy
- Other forces (strong and weak) behave in an opposite way, due to self gauge couplings (they are asymptotically free)
- Opens the possibility that coupling constants "merge" (unify!) at high energy and be represented by a single unified force.

Standard Model

Einstein's dream: unify all forces!

Unity of All Elementary-Particle Forces

Howard Georgi* and S. L. Glashow
Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02138 (Received 10 January 1974)

Strong, electromagnetic, and weak forces are conjectured to arise from a single fundamental interaction based on the gauge group $\mathrm{SU}(5)$.

It makes just one

 easily testable prediction, $\sin ^{2} \theta_{w}=\frac{3}{8}$. It also predicts that the proton decays-but with an unknown and adjustable rate.
Other work of this era:

Pati and Salam: Is Baryon Number Conserved? PRL 31, 661 (1973)
Georgi, Quinn, and Weinberg: PRL 33, 451 (1974) proton lifetime $\sim 6 \times 10^{31}$ years.

Howard Mason Georgi Born 1947

Sheldon Lee Glashow Born 1932

Grand Unified Theory (GUT)

- Invariance under $G \supset S U(3) \times S U(2) \times U(1) \rightarrow 1$ gauge coupling $\rightarrow \sin ^{2} \theta_{W}$ fixed
Predictions: $\sin ^{2} \theta_{W}=0.20 \ldots 0.25 \quad \& \quad$ charge quantisation: $Q_{e^{-}}-3 Q_{d}=0$
- Invariance: Leptons->Quarks and Quarks->Leptons
- All fermions in the same multiplet
$5^{*}=\left(\begin{array}{c}d_{1}^{c} \\ d_{2}^{c} \\ d_{3}^{c} \\ -- \\ e^{-} \\ -\nu_{e}\end{array}\right)_{L} \begin{aligned} & \text { color-antitriplet } \\ & \text { isosinglet } \\ & \text { isodoublet }\end{aligned}$

$$
\left(\begin{array}{cccccc}
\frac{G^{3}}{\sqrt{2}}+\frac{G^{8}}{\sqrt{6}}-\frac{2 B}{\sqrt{30}} & \frac{G^{1-i 2}}{\sqrt{2}} & \frac{G^{4-i 5}}{\sqrt{2}} & \mid & X_{1}^{\dagger} & Y_{1}^{\dagger} \\
\frac{G^{1+i 2}}{\sqrt{2}} & -\frac{G^{3}}{\sqrt{2}}+\frac{G^{8}}{\sqrt{6}}-\frac{2 B}{\sqrt{30}} & \frac{G^{6-i 7}}{\sqrt{2}} & \mid & X_{2}^{\dagger} & Y_{2}^{\dagger} \\
\frac{G^{4+i 5}}{\sqrt{2}} & \frac{G^{6+i 7}}{\sqrt{2}} & -\sqrt{\frac{2}{3}} G^{8}-\frac{2 B}{\sqrt{30}} & \mid & X_{3}^{\dagger} & Y_{3}^{\dagger} \\
\hdashline-\cdots & X_{3} & \mid & \frac{W^{3}}{\sqrt{2}}+\frac{3 B}{\sqrt{30}} & W^{+} \\
\hdashline X_{1} & X_{2} & X_{3} & \mid & W^{-} & -\frac{W^{3}}{\sqrt{2}}+\frac{3 B}{\sqrt{30}}
\end{array}\right)
$$

- New bosons $m x=10^{16} \mathrm{GeV}$

Can we reach GUT scale energies?

100 EeV Cosmic Ray

$$
\begin{gathered}
E_{c m}=\sqrt{2 \mathrm{Em}} \\
E \sim \sqrt{10^{20} \mathrm{eV} \times 1 \mathrm{GeV}} \\
E \sim 10^{6} \mathrm{GeV}
\end{gathered}
$$

Enrico Fermi's Globatron

$$
\begin{gathered}
p=0.3 \mathrm{~B}[\mathrm{~T}] r[\mathrm{~m}] \\
\mathrm{p} \sim 100 \mathrm{~T} \times 10^{6} \mathrm{~m} \\
E \sim 10^{8} \mathrm{GeV}
\end{gathered}
$$

Grand Unified Theory (GUT) -> Proton decay

- A possible proton decay

- Current experimental limit:

$$
\begin{aligned}
& \tau\left(N \rightarrow e^{+} \pi\right) \\
& \begin{array}{lllll}
\left.\frac{l^{L I M I T}}{\left(10^{30}\right.} \text { years }\right) \\
\mathbf{> 2 4 0 0 0} & \frac{\text { PARTICLE }}{\mathbf{p}} & \frac{C L \%}{\mathbf{9 0}} & \frac{\text { EVTS }}{\mathbf{0}} & \frac{\text { BKGD EST }}{\mathbf{0}} \mathbf{0 . 5 9}
\end{array}
\end{aligned}
$$

- Superkamiokande (1996-): water Cherenkov detector with
22.5 kton fiducial volume: $7.5 \times 10^{33} p$

τ_{1}
| From https://pdg.lbl.gov

GHzürich

Hierarchy Problem, fine tuning and naturalness

- The SM is only valid up at some energy scale \wedge. Candidates for this scale are: $\mathrm{O}\left(10^{16} \mathrm{GeV}\right)$ in GUT or the Planck scale $\mathrm{O}\left(10^{19} \mathrm{GeV}\right)$.
- The one loop radiative corrections to the Higgs boson mass

$$
\Delta m_{H}^{2}=m_{H}^{2}-m_{\text {bare }}^{2}=\frac{1}{16 \pi^{2}} \lambda^{2} \Lambda^{2}+\ldots
$$

has a quadratic divergence $\sim \Lambda^{2}$ which can only be canceled by fine-tuning the bare mass term

- For \wedge at the Planck scale to get the measured Higgs mass of $\mathrm{M}_{\mathrm{H}}=125 \mathrm{GeV}$, the bare mass should be $10^{34} \times \mathrm{M}_{\mathrm{H}}$
This fine-tuning seems to be unnatural and suggests new physics might play a role in compensating for the large corrections.

Supersymmetry (SUSY)

- SUSY: space-time symmetry mapping particles and fields of integer spin (bosons) into particles and fields of half integer spin (fermions), and viceversa.
The generators Q act as

$$
Q \mid \text { fermion }\rangle=\mid \text { boson }\rangle \quad Q \mid \text { boson }\rangle=\mid \text { fermion }\rangle
$$

- Generators change the spin of a particle
- Each particle has a super-partner

Supersymmetry (SUSY)

- Doubling the number of elementary particles to solve problems seems to be unnatural ... but ... it is been done before!
- The marriage of relativity and QM conceived anti-matter. As a result, the number of elementary particles doubled (Dirac and QFT).
- Why is anti-matter needed in the Universe?

EHIzürich

Supersymmetry (SUSY) \& the hierarchy problem

- SUSY cures the hierarchy problem in the following way: if SUSY were exact, radiative corrections to the scalar masses squared would be absent because the contribution of fermion loops exactly cancels against the boson loops

- Solution of hierarchy problem by low-energy SUSY masses $<\mathrm{O}(1 \mathrm{TeV})+$ lightest supersymmetric particle (LSP) is stable, weakly interacting \rightarrow ideal DM candidate (see later...)
- BUT sofar no signs of SUSY neither at LHC nor in direct detection experiments.....

The decay: $\boldsymbol{\mu} \rightarrow \mathbf{e} \gamma$

- G. Feinberg (1963): but if $\mathrm{W}^{ \pm}$boson exists $\rightarrow \quad \operatorname{Br}(\mu \rightarrow e \gamma) \approx 10^{-4}$

However, these processes would not happen if neutrinos associated to muons are different than neutrinos associated to electrons

$$
\nu_{e} \neq \nu_{\mu} ? \quad \text { are there different types of neutrinos? }
$$

This pointed to a more "complex" scenario - not simply naive addition of IVB

$\mu \rightarrow \mathbf{e} \gamma$ with neutrino oscillation

- In SM + ν-oscillation framework

$$
\mathcal{P}_{\nu_{l} \rightarrow \nu_{l^{\prime}}}=\quad\left|\left\langle\nu_{l^{\prime}} \mid \nu_{l}\right\rangle\right|^{2}=\left|\sum_{i} V_{l i} V_{l^{\prime} i}^{*} e^{-i\left(m_{i}^{2} / 2 E_{i}\right) / L}\right|^{2} \neq 0
$$

- $\mu \rightarrow e \gamma$ not allowed in SM
lepton flavor (number) conservation.

SM with massive neutrinos (Dirac)

$$
\begin{gathered}
\Gamma(\mu \rightarrow e \gamma)=\approx \frac{G_{F}^{2} m_{\mu}^{5}}{192 \pi^{3}} \frac{\alpha}{2 \pi} \sin ^{2} 2 \theta \sin ^{2}\left(\frac{\Delta m^{2} L}{4 E}\right) \\
B\left(\mu^{+} \rightarrow e^{+} \gamma\right) \approx 10^{-54}
\end{gathered}
$$

$-\nu$-mixing gives rise to very small $B R$ (BR not measurable)

[A. Antognini]

$\mu \rightarrow \mathbf{e} \gamma:$ SUSY searches at the high intensity/low energy frontier

- In SUSY framework
- SU(5) SUSY-GUT and SO(I0) SUSY-GUT models predict measureble LFV decay BR
- Null results
- precise test of established model
- ruled out of speculative model

$$
\begin{array}{cc}
\Gamma\left(l_{1} \rightarrow l_{2} \gamma\right)=\frac{\alpha G_{F}^{2} m_{l_{1}}^{5}}{2048 \pi^{4}}\left(\left|D_{R}\right|^{2}+\left|D_{L}\right|^{2}\right) & \Lambda \geqslant 340 \mathrm{TeV} \\
D_{R}=D_{L} \approx \frac{1}{G_{F} \Lambda^{2}} & \quad \text { with current } \mathrm{BR}\left(\mu^{+} \rightarrow \mathrm{e}^{+} \gamma\right)
\end{array}
$$

SU(5) SUSY-GUT O SO(10) SUSY-GUT

$$
10^{-14}<B\left(\mu^{+} \rightarrow e^{+} \gamma\right)<10^{-11}
$$

- In SUSY models BR may be measurable

Sensitivity up to 500 TeV

Very rare events:
if $\mathrm{BR} \sim 10^{-11} \rightarrow \sim 10^{13} \mu^{+}$needed
\rightarrow Intensity frontier

[A. Antognini]

The MEG experiment at PSI

MEG- Decay topology

$\mu \rightarrow$ e γ signal very clean

- $\mathrm{E}_{\mathrm{g}}=\mathrm{E}_{\mathrm{e}}=52.8 \mathrm{MeV}$
- $\theta_{\text {ye }}=1800$
- e and γ in time

GHzürich

MEG- Signal vs BKG decay topology

$\mu \rightarrow e \bar{\nu} \nu \gamma$

$$
\begin{gathered}
\mathrm{Ee}=\mathrm{EY}=52.8 \mathrm{MeV} \\
\theta_{\mathrm{e} \mathrm{\gamma}}=180^{\circ} \\
\mathrm{t}_{\mathrm{e} \mathrm{\gamma}} \sim 0
\end{gathered}
$$

$$
B_{\text {prompt }} \approx 0.1 \times B_{\mathrm{acc}} \quad B_{\mathrm{acc}} \approx R_{\mu}^{2} \Delta E_{e} \Delta E_{\gamma}^{2} \Delta \theta^{2} \Delta t
$$

The accidental background is dominant and it is determined by the experimental resolutions

Accidental background

Accidental coincidence of γ and e^{+}is the main background

GIHzürich

MEG setup

Detector OUTLINE

- $\quad \mu$ decay at rest
- Beam rate: $3 \times 10^{7} \mu / s$
- $\quad \mu$ stopped in $205 \mu \mathrm{~m}$ target

Y detection

- Liquid Xenon calorimetry with scintillation light
- fast: 4/22/45 ns
- high LY: $\sim 0.8 \mathrm{NaI}$
- \quad short $X_{0}: 2.77 \mathrm{~cm}$
\mathbf{e}^{+}detection
- magnetic spectrometer
- non-uniform B field \rightarrow constant bending radius and e^{+}swept rapidly away
- ultra-thin drift chambers to limit matter effects ($X_{0} \sim 0.0003$ per module)
- TC detector
- time of flight with plastic scintillator counters
- transverse scintillation fibers \rightarrow hit position

GIHzürich

MEG- Results

Full data sample: 2009-2013
Best fitted branching ratio at 90\% C.L.:

$$
\mathcal{B}\left(\mu^{+} \rightarrow e^{+} \gamma\right)<4.2 \times 10^{-13}
$$

From MEGA to MEG:
improvement by a factor ~ 30

GIHzürich

MEG upgrade

The MEGII experiment

New electronics:

Wavedream
~9000
channels
at 5GSPS

Resolution everywhere

Updated and new Calibration methods
Quasi mono-
chromatic
positron beam

Three possible charge Lepton Flavour Violating Process (cLFV)

캐zürich
The $\mu \rightarrow$ eee at PSI

The Mu3e: signal vs BKG

search for the LFV decay:
Signature

\mathbf{e}^{+}
Background

Background from internal conversion

Irreducible BG: radiative decay with internal conversion

$$
\mathrm{B}\left(\mu^{+} \rightarrow \mathrm{e}^{+} \mathbf{e}^{+} \mathrm{e}^{-} \mathbf{v} \mathbf{v}\right)=3.4 \cdot 10^{-5}
$$

$$
\begin{aligned}
& \sum_{i} E_{i}=m_{u} \\
& \sum_{i} \vec{p}_{i}=0
\end{aligned}
$$

EHIzürich

Accidental Background

- Overlays of two normal muon decays with an electron
- Electrons from Bhabha-scattering, photon conversion, mis-reconstruction

Need excellent:

- Vertex resolution
- Timing resolution
- Kinematics reconstruction

GIHzürich

Mu3e experimental setup

GIHzürich

Sensitivity

Dark Matter

The first evidence for "die dunkle Materie"

Coma Cluster (Abell 1656) is a large cluster of galaxies that contains over 1,000 identified galaxies.

Using the virial theorem and assuming a uniform distribution of the cluster total mass in a sphere of radius $R_{\text {tot }}$ Zwicky (1933) got

$$
M_{\mathrm{tot}} \approx \frac{R_{\mathrm{tot}} \bar{v}^{2}}{5 G_{N}}
$$

Plugging in the observed average "nebulae" velocity

$$
M_{\mathrm{tot}} \gtrsim 9 \times 10^{43} \mathrm{~kg}=4.5 \times 10^{13} M_{\odot}
$$

From observation they knew that a typical nebula would contain about 8.5×10^{7} sunlike stars.

Fritz Zwicky (1898-1974) was a Swiss astronomer He studied at ETH (1916-1922)

The galactic rotation curves

With the advent of radio-telescopes it became possible to measure the velocity as a function of radius of gas circling around cylindrical symmetric systems such as spiral galaxies.

$$
v_{c}^{2}(r)=\frac{G_{N} M(r)}{r}
$$

Vera Rubin (1926-2016) was a US astronomer

For a Galaxy as an homogenous sphere of radius R and constant density

$$
v_{c}(r)=\sqrt{\frac{4 \pi G_{N} \rho}{3}} r,(r \leq R)
$$

Outside any spherical symmetric distribution of mass M

$$
v_{c}(r)=\sqrt{\frac{G_{N} M}{r}},(r \geq R)
$$

The galactic rotation curves

This observation necessitates at least one of the following:

1) There exists in galaxies large quantities of unseen matter which boosts the stars' velocities beyond what would be expected on the basis of the visible mass alone, or 2) Newton's Laws do not apply to galaxies.

Option (1) leads to the dark matter hypothesis;

From E. Depero PhD Thesis (ETH 2020)
option (2) leads to MOdified Newtonian Dynamics (MOND).

MOdified Newtonian Dynamics (MOND)

Milgron's idea: Newton's laws extensively tested in high-acceleration environments (in the Solar System and on Earth) but have not been verified for objects with extremely low acceleration, such as stars in the outer parts of galaxies. This led Milgrom to postulate a new effective gravitational force law:

$$
F_{N}=\operatorname{maf}(x) \quad \text { where } \quad f(x)=f\left(\frac{a}{a_{0}}\right) \begin{cases}f(x) \rightarrow 1 & \text { for } x \gg 1 \\ f(x)=x & \text { for } x \ll 1\end{cases}
$$

Thus, in the deep-MOND regime $\quad a \ll a_{0} \Longrightarrow \quad F_{N}=m \frac{a^{2}}{a_{0}}$

$$
\frac{G M m}{r^{2}}=m \frac{\left(\frac{v^{2}}{r}\right)^{2}}{a_{0}} \quad \Longrightarrow \quad v^{4}=G M a_{0}
$$

Mordehai Milgrom (1946-)
Israeli astrophysicist
\rightarrow the star's rotation velocity is independent of r, its distance from the centre of the galaxy, the rotation curve is flat, as required. By fitting his law to rotation curve data, Milgrom found $a_{0} \approx 1.2 \times 10^{-10} \mathrm{~ms}^{-2}$

The bullet cluster

The Bullet Cluster (1E 0657-56) consists of two colliding clusters of galaxies.

The stars of the galaxies, observable in visible light, not greatly affected by the collision, and most passed right through, gravitationally slowed but not otherwise altered.

Chandra X-ray Observatory (CXO)
The hot gas of the two colliding components. The gases of the Intracluster medium interact electromagnetically, causing the gases of both clusters to slow much more than the stars.

Dark matter, was detected indirectly by the gravitational lensing of background objects. In MOND, the lensing would be expected to follow the baryonic matter; i.e. the X-ray gas. However, the lensing is strongest in two separated regions near (possibly coincident with) the visible galaxies. This provides support for the idea that most of the gravitation in the cluster pair is in the form of two regions of dark matter, which bypassed the gas regions during the collision. This accords with predictions of dark matter as only gravitationally interacting, other than weakly/feebly interacting.

Dark Matter: Astro + Cosmology through Gravitational effects

GALACTIC ROTATION CURVES

GRAVITATIONAL LENSING

Dark Energy

Interaction DM-SM other than gravity? If so very weak...

Only gravitationally? Nightmare scenario from a particle physicist point of view.

$\Omega_{D M} \sim 5 \Omega_{S M}$

Relic densities of Standard Matter (SM) and Dark Matter (DM) are "similar"

SUGGESTS COMMON ORIGIN BETWEEN SM and DM.
Can those be related with A SINGLE THEORY?

Weakly Interacting Massive Particles (WIMPs)

INTERACTS VIA WEAK FORCE (\mathbf{W} and \mathbf{Z} BOSONS)

Dark matter searches related by crossing symmetry:

EHIzürich

The WIMP miracle

annihilation

OBSERVED AMOUNT OF

DARK MATTER TODAY

Thermal averaged
ANNIHILATION RATE

$$
\begin{gathered}
\text { "WEAK SCALE" MASS } \\
\text { mx } 100 \text { GeV, } \\
g x=9 \text { WEAK }
\end{gathered}
$$

> expansion of universe

IDEAL CANDIDATE:
Lightest Super-symmetrical Particle

Direct WIMP searches (Method)

where N_{T} is the number of nuclei in the target (Detector physics input), $\sigma=\sigma_{X N}$ is the WIMP-nucleus elastic scattering cross section (Particle physics input), and $\langle v\rangle$ is the average WIMP velocity in the lab frame (Astrophysics input).

$$
\langle v\rangle=\int_{0}^{\infty} v f(v) d v
$$

Status of direct Searches

MEASURE NUCLEAR RECOIL e.g. in liquid Argon or Xenon

M. Klasen et al. et al. Prog.Part.Nucl.Phys. 85 (2015) 1-32

Annual modulation

K. Freese, J. Frieman and A.Gould, Phys. Rev. D37, 3388 (1988)

$$
\begin{gathered}
v_{E}(t)=v_{\odot}+v_{\oplus} \cos \gamma \cos \omega\left(t-t_{0}\right) \\
=v_{\odot}+\Delta v_{E} \cos \omega\left(t-t_{0}\right) \\
R\left(v_{E}\right)=R\left(v_{\odot}\right)+\left(\frac{\partial R}{\partial v_{E}}\right)_{v_{\odot}} \Delta v_{E} \cos \omega\left(t-t_{0}\right)
\end{gathered}
$$

where $v_{\odot}=v_{\text {rot }}+12 \mathrm{~km} / \mathrm{s}$ is the sun's velocity with respect to the galactic halo and $\Delta v_{E} \simeq 15 \mathrm{~km} / \mathrm{s}, \omega \equiv 2 \pi / T$ ($T=1$ year) with $t_{0}=152.5$ days

Phase and period are both predicted!

Tough times for the WIMP miracle?

So far no WIMP/SUSY

Light Mediators searches complementary to WIMPs

recent review https://arxiv.org/pdf/1707.04591.pdf

Dark Matter

Mediator

Standard Model

OBSERVED AMOUNT OF DARK MATTER TODAY

The WIMPIess MIRACLE

$$
\Omega_{X} \propto \frac{1}{\langle\sigma v\rangle} \sim \frac{m_{X}^{2}}{g_{X}^{4}}
$$

The WIMP miracle

$$
\left(m_{X}, g_{X}\right) \sim\left(m_{\text {weak }}, g_{\text {weak }}\right)
$$

J. Feng and J. Kumar Phys.Rev.Lett.101:231301,2008

$$
\text { Large range for } g x \text { and } m x
$$

GHzürich

Renormalizable Portals

B. Batell, M. Pospelov and A. Ritz, Phys. Rev. D80 (2009) 095024.

- "Axion"
$\frac{1}{f_{a}} F_{\mu \nu} \tilde{F}^{\mu \nu}{ }_{a}$
axions \& axion-like particles (ALPs)
- "Vector"

$$
\epsilon F^{Y, \mu \nu} F_{\mu \nu}^{\prime}
$$

dark photon A^{\prime}

- "Higgs" $\lambda H^{2} S^{2}+\mu H^{2} S$
exotic Higgs decays?
- "Neutrino" $\kappa(H L) N$
sterile neutrinos?

GIHzürich

Renormalizable Portals

B. Batell, M. Pospelov and A. Ritz, Phys. Rev. D80 (2009) 095024.

| - "Axion" | $\frac{1}{f_{a}} F_{\mu \nu} \tilde{F}^{\mu \nu} a$ |
| :--- | :--- | \(\begin{aligned} \& axions \& axion-like

\& particles (ALPs)\end{aligned}\)

- "Higgs"
$\lambda H^{2} S^{2}+\mu H^{2} S$
exotic Higgs decays?
- "Neutrino" $\quad \kappa(H L) N \quad$ sterile neutrinos?

The Axion portal - CP violation in QCD

CP violating term in QCD Lagrangian:

$$
\mathcal{L}_{\mathrm{QCD}} \propto \bar{\theta} \frac{\alpha_{s}}{8 \pi^{2}} F_{\mu \nu} \tilde{F}^{\mu \nu}
$$

Where

$$
\bar{\theta}=\theta-\arg \operatorname{det}(Y_{u} \underbrace{}_{d})
$$

Random phase from
QCD Θ-vacuum

Phases from Yukawa coupling: CKM matrix

CP violating phase through CKM matrix
\rightarrow Physically observable CP violation in strong interaction expected
but so far no evidence

The Axion portal - the strong CP problem

CP violating term in QCD induces neutron electric dipole moment (EDM)

$$
d_{N}=\left(5.2 \times 10^{-16} \mathrm{e} \cdot \mathrm{~cm}\right) \bar{\theta}
$$

Current experimental bound: $\quad d_{N}>2 \times 10^{-26} \mathrm{e} \cdot \mathrm{cm}$

Two seemingly independent terms cancel each other at the level of 10-10

Strong CP problem

Axions as a solution to the strong CP problem

Make $\overline{\mathbf{\top}}$ dynamical $\rightarrow \mathbf{U}(1)$ with spontaneous Peccei Quinn symmetry breaking

Axions as a solution to the strong CP problem

If axion exists:
 \rightarrow Contribution to Dark Matter:
 as relic oscillations of $\overline{\boldsymbol{\Theta}}$ around minimum

Oscillations amplitude (particle density) damped by expansion of universe $\mathrm{H}(\mathrm{t})$

Damping depends on ratio
oscillation frequency $\left(m_{a}\right)$ to $\mathrm{H}(\mathrm{t})$

Axions as a solution to the strong CP problem

R. Peccei und H. Quinn,
Phys. Rev. Lett. 38, 1440 (1977)
S. Weinberg, Phys. Rev. Lett. 40, 223 (1978);
F. Wilczek, Phys. Rev. Lett. 40, 279 (1978)

The Birth of Axions
Frank Wilczek
Institute for Advanced Study
Princeton, NJ 08540
usual, very light particle. I called this particle the axion, after the laundry detergent, because that was a nice catchy name that sounded like a particle and because this particular particle solved a problem involving axial currents.

EHIzürich

Detection of Axions coupling to photons - Primakoff effect

$$
\sum_{\mathcal{L}_{a \gamma}=\frac{\alpha}{2 \pi} C_{a \gamma} \frac{a(t)}{f_{a}} \boldsymbol{E} \cdot \boldsymbol{B}} \begin{aligned}
& \text { Real photon } \\
& E=m c^{2}=h \boldsymbol{v}
\end{aligned}
$$

Detection of Axions coupling to photons - Primakoff effect

$$
E=m c^{2}=h \boldsymbol{v}
$$

B-Field
\rightarrow Axion in B-field sources E-field oscillations!
Suppressed by $\frac{1}{f_{a}}$

Axions detection - cavities in B-field

\rightarrow Use resonator to "pump cavity"
Adjusting resonance frequency: "Tuning Rod"

ADMX
U Washington, USA

CAPP
IBS, S. Korea

HAYSTAC
Yale University, USA

$$
P_{s i g} \propto B^{2} V Q_{c a v}
$$

$$
P_{\text {sig }}\left(B=6.8 T, V=136 I, Q=10^{5}\right) \sim 2 \cdot 10^{-22} W
$$

GIHzürich

Status of current searches

The Vector portal - the Dark Photon

- "Higgs" $\quad \lambda H^{2} S^{2}+\mu H^{2} S$
- "Neutrino" $\kappa(H L) N$
exotic Higgs decays?
sterile neutrinos?

Dark Matter

Kinetic Mixing

Standard Model

NEW FORCE CARRIED BY MASSIVE VECTOR BOSON: DARK PHOTON

DARK SECTORS - THE VECTOR PORTAL

Dark Sector

Kinetic Mixing

Standard Model

DARK SECTOR (DS) charged under a new $U(1)^{\prime}$ gauge symmetry and interacts with SM through kinetic mixing (ε) of a MASSIVE VECTOR MEDIATOR (A') with our photon.
Dark matter with mass $\left(m_{x}\right)$, part of DS.

Four parameters: $\mathrm{m}_{A^{\prime}}, \mathrm{m}_{\mathrm{X}}, \alpha_{\mathrm{D}}=\mathrm{e}_{\mathrm{D}^{2}} / 4 \pi, \varepsilon$

$$
\begin{aligned}
\mathcal{L}= & \mathcal{L}_{\mathrm{SM}}-\frac{1}{4} F_{\mu \nu}^{\prime} F^{\prime \mu \nu}+\frac{\epsilon}{2} F_{\mu \nu}^{\prime} F^{\mu \nu}+\frac{m_{A^{\prime}}^{2}}{2} A_{\mu}^{\prime} A^{\prime \mu} \\
& +i \bar{\chi} \gamma^{\mu} \partial_{\mu} \chi-m_{\chi} \bar{\chi} \chi-e_{D} \bar{\chi} \gamma^{\mu} A_{\mu}^{\prime} \chi
\end{aligned}
$$

DARK SECTORS - THE VECTOR PORTAL

Dark Sector

Kinetic Mixing

Standard Model

In this framework DM can be produced thermally in the early Universe

OBSERVED AMOUNT OF DARK MATTER TODAY

$$
\Omega_{X} \propto \frac{1}{<v \sigma>} \sim \frac{m_{X}^{2}}{y} \quad \text { WHERE } \quad y=\epsilon^{2} \alpha_{D}\left(\frac{m_{X}}{m_{A^{\prime}}}\right)^{4}
$$

GIHzürich

The ($\mathrm{y}, \mathrm{m} \mathrm{x}$) DM PARAMETER SPACE

For a review see e.g https://arxiv.org/pdf/1707.04591.pdf

DM -> SM annihilation rate is $\sim y$,
useful variable to compare exp. sensitivities

EHIzürich

Production of Dark Photons

Decays of Dark Photons

The muon (g-2): an additional motivation to search for dark photons

B. Abi, et al. Phys. Rev. Lett. 126, 141801 (2021)
M. Pospelov, A. Ritz and M. B. Voloshin, Phys. Lett. B 662, 53 (2008)

$$
\begin{aligned}
\left(g_{s}-2\right)_{\mu}^{\gamma} & \simeq \frac{\alpha}{2 \pi} \\
& \simeq 10^{-3}
\end{aligned}
$$

$$
\begin{aligned}
\left(g_{s}-2\right)_{\mu}^{A^{\prime}} & \simeq \frac{\alpha}{2 \pi} \times \epsilon^{2} \quad\left(m_{A^{\prime}} \ll m_{\mu}\right) \\
& \simeq 10^{-3} \times \epsilon^{2}
\end{aligned}
$$

Searches for dark photons: David and Goliath

The NA64 search for $A^{\prime} \rightarrow \chi \bar{\chi}$

INVISIBLE DECAY MODE $\quad m_{A}^{\prime}>2 m_{X}$

Missing Energy/momentum

The NA64 method to search for $\mathbf{A}^{\prime} \rightarrow \chi \bar{\chi}$
TAGGED 100 GeV

Requested ECAL ENERGY < 50 GeV

"BREMSSTRAHLUNG" OF A"

The NA64 method to search for $\mathrm{A}^{\prime} \rightarrow \chi \bar{\chi}$

The NA64 method to search for $\mathrm{A}^{\prime} \rightarrow \chi \bar{\chi}$

The CERN SPS H4 electron beam

> + Up to $7 \times 10^{6} \mathrm{e}-/$ spill, $2-4$ spill/min, spill duration 5 s
> + Low contamination: $\pi(<1 \%), \mu / \mathrm{K}(0.1 \%)$
> + Low energy tails $(<1 \%)$
> \& Beam spot of $1.5 \mathrm{~cm}(\mathrm{FWHM})$

GIHzürich

The CERN SPS H4 electron beam

CERN's Accelerator Complex
https://home.cern/science/accelerators

The Electromagnetic Calorimeter (ECAL)

The Hadronic Calorimeter (HCAL)

The NA64 search for $A^{\prime} \rightarrow \chi \bar{\chi}$ - results combined analysis 2016-2018

2.8×10^{11} electrons on target

MASS OF THE DARK PHOTON

MASS OF THE DARK PHOTON

NA64 collaboration, Phys. Rev. Lett. 118, 011802 (2017) NA64 collaboration, Phys. Rev. Lett. 123, 121801 (2019)

The Massless Dark photon case - Positronium

S. L. Glashow, Phys. Lett. B167, 35 (1986)

Coupling between oPs and oPs' \Rightarrow breaking of degeneracy

Energy splitting

Rabi oscillation:

$$
P\left(o-P s \rightarrow o-P s^{\prime}\right)=\sin ^{2}(2 \pi \varepsilon v t)
$$

Experimental signature: oPs \rightarrow invisible decay (missing energy)

Standard model decay: o-Ps $\rightarrow 3 \gamma$
\rightarrow energy deposition of 1022 keV (Ps mass, $\mathrm{E}=\mathrm{mc}^{2}$)

EHIzürich

Experimental signature: oPs \rightarrow invisible decay (missing energy)

Invisible decay: o-Ps \rightarrow oPs' $\rightarrow 3 \gamma^{\prime}$
\rightarrow no energy deposition (event compatible with 0 energy)

Results and Outlook for massless dark photon searches with oPs

- Latest results: no excess above expected background observed \rightarrow for the first time limit comparable to constraints from cosmology.
C. Vigo, P. Crivelli et al., PRL 124,101803 (2020)
- Main limitations: accidental triggers, positronium escaping the detection region

Resistive germanium
Possible improvements

- Higher e+ flux (Neon moderator) and better energy spread (Ni/W remoderator)
- Implementation of 10-20 nm carbon foil to block Ps escaping the detection region
- GOAL: reach a sensitivity on mixing strength of $\epsilon \sim 10^{-9}$

Grounded pipe

(not excluded by cosmology, motivated by BSM theories...)

Another way to search for new bosons - muonium (M) atom

M (positive muon-electron bound state)
Predicted in 1957 (Friedmann, Telegdi, Hughes) Unstable with lifetime of $2.2 \mu \mathrm{~s}$.
Main decay channel: $\mu^{+}->\mathrm{e}^{+}+\overline{\boldsymbol{v}}_{\mu}+\nu_{\mathrm{e}}$

Discovered in 1960 (Hughes) by detecting muonium spin (Larmor) precession in an external magnetic field perpendicular to the spin direction.

Muonium Lamb shift

THEORY $\quad\left(E\left(2 S_{1 / 2}\right)-E\left(2 P_{1 / 2}\right)\right)_{\mathrm{Mu}}^{\mathrm{th}}=1047.498(1) \mathrm{MHz}$.
G. Janka, B. Ohayon and P. Crivelli, arXiv:2111.13951 (2021)
V. Yerokhin et al. ,Annalen der Physik 531, 1800324 (2019)
M. I. Eides, H. Grotch, and V. A. Shelyuto, Phys. Rep. 342, 63 (2001).
W. Liu, M. Boshier, S. Dhawan et al., Phys. Rev. Lett. 82, 711 (1999).

EXPERIMENT $\left(E\left(2 S_{1 / 2}\right)-E\left(2 P_{1 / 2}\right)\right)_{\mathrm{Mu}}^{\exp }=1042(22) \mathrm{MHz}$.
C .J. Oram et al. Phys. Rev. Lett. 52, 910 (1984). DOI 10.1103/PhysRevLett.52.910. @ TRIUMF K. Woodle, et al., Phys. Rev. A 41, 93 (1990). DOI 10.1103/ PhysRevA.41.93 @ LAMPF

Measurement of M the Lamb shift

LEM beamline $10 \mathrm{kHz/}$ 10 keV Paul scherer insiliut

Measurement of M the Lamb shift

Measurement of M the Lamb shift

Measurement of M the Lamb shift

Measurement of M the Lamb shift

Measurement of M the Lamb shift

LEM beamline т. Prokscha et al., NIMA 595, 317 (2008)

LYMAN-ALPHA DETECTOR

TAGGING+M(2S) FORMATION

Results of the M Lamb shift

B. Ohayon, P.Crivelli, et al. Phys. Rev Lett. 128, 011802 (2022)

48 HOURS DATA TAKING (100x statistics compared to previous measurements)

	Central Value	Uncertainty
Fitting	1139.9	2.3
4 S contribution		<1.0
MW-Beam alignment		<0.32
MW field intensity		<0.04
M velocity distribution		<0.01
AC Stark $2 P_{3 / 2}$	+0.26	<0.02
$2^{\text {nd }}$-order Doppler	+0.06	<0.01
Earth's Field		<0.05
Quantum Interference		<0.04
$2 S_{F=1}-2 P_{1 / 2, F=1}$	1140.2	2.5
Hyperfine	-93.0	0.0
Lamb Shift	1047.2	2.5
Theoretical value	1047.47	0.02

Results in agreement with theoretical calculations. Precision not enough to test b-QED but can be used to constraint new physics.

Searches for new bosons via positronium/muonium spectroscopy

- New bosons could mediate new forces resulting in shifts of Ps and M energy levels. C Frugiuele et al., Phys. Rev. D100, 015010 (2019)
- Scattering between two fermions described by different potentials (scalar-scalar, vector-vector...)

We focus on the scalar-scalar potential:

$$
V_{S S}(\vec{r})=-g_{1}^{S} g_{2}^{s} \frac{e^{-M r}}{4 \pi r}
$$

Searches for new bosons via positronium/muonium spectroscopy

- New bosons could mediate new forces resulting in shifts of Ps and M energy levels. C Frugiuele et al., Phys. Rev. D100, 015010 (2019)
- Scattering between two fermions described by different potentials (scalar-scalar, vector-vector...)
P.Fadeev et al.,Phys. Rev. A 99, 022113 (2019)

We focus on the scalar-scalar potential:

$$
V_{S S}(\vec{r})=-g_{1}^{S} g_{2}^{s} \frac{e^{-M r}}{4 \pi r}
$$

- Do you have an idea on how we could calculate the shift on the M energy levels induced by such a new scalar boson?

Searches for new bosons via positronium/muonium spectroscopy

- Using perturbation theory and plugging in the hydrogen wave functions (for positronium one needs to correct for the reduced mass, i.e $m_{e} \rightarrow m_{e} / 2$
- Leading order corrections: $\quad\left\langle V_{s s}\right\rangle=-\frac{g_{1}^{s} g_{2}^{s}}{4 \pi} F_{n, l}^{1}(M)$
$F_{n, l}^{k}(M)=\left\langle\frac{e^{-M r}}{r}\right\rangle_{n, l}, k=1$

	$\boldsymbol{l}=\mathbf{0}$	$\boldsymbol{l}=\mathbf{1}$	$\boldsymbol{l}=\mathbf{2}$
$\boldsymbol{n}=\mathbf{1}$	$\frac{4}{a_{0}\left(M a_{0}+2\right)^{2}}$	X	X
$\boldsymbol{n}=\mathbf{2}$	$\frac{2 M^{2} a_{0}^{2}+1}{4 a_{0}\left(M a_{0}+1\right)^{4}}$	$\frac{1}{4 a_{0}\left(M a_{0}+1\right)^{4}}$	X
$\boldsymbol{n}=\mathbf{3}$	$\frac{4\left(243 M^{4} a_{0}^{4}+216 M^{2} a_{0}^{2}+16\right)}{9 a_{0}\left(3 M a_{0}+2\right)^{6}}$	$\frac{64\left(9 M^{2} a_{0}^{2}+1\right)}{9 a_{0}\left(3 M a_{0}+2\right)^{6}}$	$\frac{64}{9 a_{0}\left(3 M a_{0}+2\right)^{6}}$

Searches for new bosons via positronium／muonium spectroscopy

－Perturbations

$$
\begin{aligned}
& \Delta E_{S S}\left(2 S^{0} \rightarrow 1 S^{0}\right)=\frac{g_{1}^{S} g_{2}^{s}}{4 \pi}\left(\frac{4}{a_{0}\left(M a_{0}+2\right)^{2}}-\frac{2 M^{2} a_{0}^{2}+1}{4 a_{0}\left(M a_{0}+1\right)^{4}}\right) \\
& \Delta E_{S S}\left(2 S^{0} \rightarrow 2 P^{0}\right)=\frac{g_{1}^{S} g_{2}^{s}}{4 \pi}\left(\frac{1}{4 a_{0}\left(M a_{0}+1\right)^{4}}-\frac{2 M^{2} a_{0}^{2}+1}{4 a_{0}\left(M a_{0}+1\right)^{4}}\right)
\end{aligned}
$$

－To set a bound calculate the minimal value for a given M to exceed 2σ of theoretical result

$$
g_{\zeta}^{1} g_{\zeta}^{2}>\frac{h \max _{ \pm}\left|\left(v_{\text {exp }}-v_{\text {the }}\right) \pm 2 \rho_{\text {the,exp }}\right|}{C_{\text {transition }}(M)}
$$

where $\quad, \rho_{\text {the }, \text { exp }}=\sqrt{\rho_{\text {the }}^{2}+\rho_{\text {exp }}^{2}} \quad$ and $\quad C_{\text {transition }}(M)=\frac{\Delta E_{\zeta \zeta}(\text { transition })}{g_{⿳ 亠 二 口}^{1} g_{\zeta}^{2}}$

Muonium spectroscopy as a probe for new muonic forces

B. Ohayon, P.Crivelli, et al. Phys. Rev Lett. 128, 011802 (2022)

Bands: region suggested by (g-2),
B. Abi, et al. Phys. Rev. Lett. 126, 141801 (2021)

combined with bound from (g-2)
L. Morel et al, Nature 588, 61 (2020),
R. H. Parker et al., Science 360, 191 (2018)
D. Hanneke et al. e Phys. Rev. Lett. 100, 120801 (2008)

Baryon/anti-baryon asymmetry

Baryon/anti-baryon asymmetry

- Why does the universe contain matter?
- After the Big Bang there should have been equal amounts of matter and anti-matter
- Where did all the anti-matter go?
- We (matter) have annihilated antimatter.
- We won at the expense of a billion of twins.
- Why was there a tiny asymmetry
 such that we could survive?

How do we know that there are no anti-stars/anti-galaxies out there and that we leave in a matter dominated region of the Universe?

How to generate such an asymmetry?

Three necessary conditions to generate Baryon-Antibaryon-Asymetry (BAU)

Andrei Sakharov
1921-1989 Russian physicist
(1) Baryon number B violation;
(2) C-symmetry and CP-symmetry violation; needed so that interactions producing more baryons than anti-baryons are not counterbalanced by interactions producing more anti-baryons than baryons.
(3) Interactions out of thermal equilibrium; otherwise, CPT symmetry would assure compensation between processes increasing and decreasing the baryon number.

The Standard Model is not enough

- CP violation well established in the quark sector (described by phase of CKM matrix)
- Too small to explain baryon asymmetry (SM only explains 10-10 of what we need!)
- Need new phenomena such as:
- CP violation in the leptonic sector
- Lorentz/CPT violation

The Standard Model Extension (SME)

EHIzürich

High precision spectroscopy as a sensitive test

$$
\epsilon=\epsilon_{0}+\delta \epsilon \underset{\nearrow}{ } \text { Lorentz-violating contribution }
$$

Conventional case

Conventional case

High precision spectroscopy as a sensitive test

Conventional case
Lorentz violating case

EHIzürich

High precision spectroscopy of anti hydrogen as a sensitive test

- Lorentz-violating energy shift for matter
- Lorentz-violating energy shift for anti-matter

ㅋHzürich

Anti-hydrogen - hydrogen comparison

Hydrogen spectroscopy is now at a relative accuracy of 10^{-15}

An extremely well measured number in atomic physics
$2466061413.187035(10) \mathrm{MHz}$
artney et al
Phys. Rev. Lett. 107, 203001 (2011)

Antihydrogen
Hydrogen

Challenges of creating antihydrogen

Hard! A bound system occupies small part of the phase-space

Negative particle

Positive particle

Both exotic

In accelerator

Coulomb-pairs (protonium, pion-kaon...)

Formation of antihydrogen

1) Direct spontaneous radiative recombination

$$
\overline{\mathrm{p}}+\mathrm{e}^{+} \rightarrow \overline{\mathrm{H}}+\mathrm{h} \nu, \quad \Gamma_{\mathrm{srr}} \sim n_{e} T_{e}^{-0.63}
$$

Dipole allowed free-bound transition that favours capture into strongly bound state.
2) Three body recombination

$$
\overline{\mathrm{p}}+\mathrm{e}^{+}+\mathrm{e}^{+} \rightarrow \overline{\mathrm{H}}+\mathrm{e}^{+}, \quad \Gamma_{\mathrm{tbr}} \sim n_{e}^{2} T_{e}^{-4.5}
$$

Elastic encounter of $2 \mathrm{e}^{+}$in the $\overline{\mathrm{p}}$ continuum thus energy transfer around $k \mathrm{~T}_{\mathrm{e}}->$ capture into weakly bound state
3) Charge- exchange with Ps

$$
\bar{p}+P s^{*} \rightarrow \bar{H}^{*}+e^{-} \quad \sigma \sim \pi a_{o}^{2} n_{P s}^{4}
$$

Necessary ingredients: high density, low

 energy antiprotons and positrons

CERN facilities - creating antiprotons

ㅋHzürich

The Antiproton Decelerator at CERN

Operation cycle is long: 100 s storage is needed - Multiple stages of deceleration in RF cavities

Deceleration from 3.5 GeV/c to $100 \mathrm{MeV} / \mathrm{c}$ (5.3 MeV kinetic energy)

- Needs active cooling of the beam, otherwise compressing the phase-space in the longitudinal direction results in blow-up in the transverse direction (Liouville-theorem)

Production of low energy anti-hydrogen ATHENA\&ATRAP (2002)

Penning-Malberg trap working principle

HOW A TRAP WORKS

Trapping of antiprotons

- Capture trap (50 cm)

b) Reflecting

c) Trapping

d) Cooling

Cooling and trapping of positrons

(1) Source: $\mathrm{Na}-22,545 \mathrm{keV}$, but moderation on solid neon
(2) Transport to main solenoid

Few million e+ / sec
(3) In main solenoid: 3 regions of decreasing density N2 buffer gas and potential:

- The gas provides the dissipation mechanism. To prevent annihilation: differential pumping.
- Rotating wall: makes the plasma spin faster, and squeeze axially (angular momentum conservation)
- Lowering the electrode voltage evaporative cooling: plasma reaches several 10's of degree Kelvin

Transfer to mixing trap

(a)

(b)

Transfer efficiency ~ 35\%:
50×10^{6} in mixing trap
Positron plasma :
r~2mm, $1 \sim 32 \mathrm{~mm}$,
$\mathrm{n} \sim 2.5 \times 10^{8} / \mathrm{cm}^{3}$
Lifetime: ~hours

Penning-Malberg trap

ㅋHzürich

Positron-antiproton mixing

catching trap mixing trap \quad i

Oscillating RF field excite the \bar{p} so that it overlaps with the e^{+}

Antihydrogen detection - ATHENA (2002)

Vertex rec. eff. $\quad 50 \%$
Position resolution (d): 4 mm
Silicon trigger efficiency: ($85+-10$)\%
Photon energy resolution: 24% (FWHM) @ 511 KeV
Photon detection efficiency: 20\%

킥ürich

The ALPHA experiment (2006) - magnetic trapping

Magnetic trap for neutral (anti-) atoms

Atoms with magnetic moment acquire a potential in a magnetic field according to the formula:

$$
U=-\vec{\mu} \cdot \vec{B}
$$

Force $\vec{F}=\vec{\mu} \nabla \vec{B}$

Trappable states

Trapping condition

$$
\mu B \geq k_{B} T
$$

Requires cold atoms: $0.6 K$ for 1T field

Anti-Helmholtz coil configuration - magnetic quadrupole field

(b)

(c)

GIHzürich

The ALPHA experiment (2009)

To demonstrate trapping ramp down magnetic field and look for annihilations on the beam pipe

- Background from cosmics: rejected by topology

- Potential problem: „mirror trapping" of bare \bar{p} in homogenous B field \longrightarrow Solution:
- Mixing with heated e+ (suppresses anti-H production)
- Release anti-H while applying E field: pbars would be deflected

Antihydrogen trapping rates and confinement time

Confinement time up to 1000 s -> allows for precision spectroscopy of anti-hydrogen:
$-\overline{\mathrm{H}}$ in the ground state (remember $\overline{\mathrm{H}}$ formed in highly excited Rydberg state takes about 1 second to de-excite to ground state)

- Present numbers: ~20 antihydrogen atoms every 4 minutes, accumulating more than $1000 \overline{\mathrm{H}}$ in 8 hours

GIHzürich

First interaction of Antihydrogen with radiation

ALPHA-2: First detection of the 1S-2S transition

a

b

Two-photon transition at 243-nm driven by a resonant cavity locked to the frequency, passing through the centre of the trap

Question: detection of the 1S-2S transition

ALPHA-2: First detection of the 1S-2S transition

When laser on resonance $->$ number of trapped $\overline{\mathrm{H}}$ depleted because of photoionisation of atoms in the same excitation laser.

Type	Number of detected events	Background	Uncertainty
Off resonance	159	0.7	13
On resonance	67	0.7	8.2
No laser	142	0.7	12

$$
\begin{aligned}
& f_{\mathrm{d}-\mathrm{d}}=2,466,061,103,064(2) \mathrm{kHz} \\
& f_{\mathrm{c}-\mathrm{c}}=2,466,061,707,104(2) \mathrm{kHz}
\end{aligned}
$$

No difference between hydrogen and antihydrogen transition frequency at the level of 10^{-10}

Measurement of the 1S-2S line shape

Laser drives 1S-2S transition (2-photon)
A third photon drives it to continuum: lost in the trap Microwave removes 1 Sc states, then ramping down the magnet probes 1Sd atoms

Measured transition:
f
$\mathrm{~d}-\mathrm{d}$

$$
=2,466,061,103,079.4(5.4) \mathrm{kHz}
$$

Calculation for hydrogen in 1T field

$$
\underset{d-d}{f}
$$

$$
=2,466,061,103,080.3(0.6) \mathrm{kHz}
$$

Results in agreement within

$$
2 \times 10^{-12}
$$

Prospects: laser cooling to decrease the temperature —> narrower line

Summary

- Low-energy particle physics addresses fundamental questions of the standard model and can be sensitive to BSM physics at very large energy.
- Low-energy, precision experiments are complementary to high-energy physics
- Low-energy particle physics can do more than BSM searches: determination of fundamental constant, QCD at low energy, hadron structure, nuclear structure test of QED, bound-state QED, gravity, fundamental symmetry tests and technology development

