

Debugging Python Requests

Jack Henschel

oc login https://api.paas.okd.cern.ch -u jhensche

Authentication required for https://api.paas.okd.cern.ch:443 (openshift)
Username: jhensche

Password:
Login failed (401 Unauthorized)
Verify you have provided correct credentials.

oc sso-login --server=https://api.paas.okd.cern.ch
Open the following link to log in:

https://auth.cern.ch/auth/realms/cern/device?user_code=EQGD-UTGC

Waiting for login...
Logged into "https://api.paas.okd.cern.ch:443" as "jhensche" using the token p

Successfully logged in to 'paas'

/usr/bin/oc sso-login paas returning error 401

Caller Visibility Incident Location
Y Sensitive (Confidential) 40/3-A12

Service Element Functional Element Assignment group

PaaS Web Application Hosting S... OpenShift Infrastructure for appl... OpenShift Infrastructure for appl...
Assigned to

® JackHenschel

Jack Henschel ®3moago . Additional comments (Customer View

Hello,

Could you clear the token cache and run the command again with the "-v" (verbose) option?
=rm -rf ~/.config/oc-sso_login/*.json

= /usr/bin/foc sso-login paas v

Please paste the output here (or in attachment) and remove the "access_token" and
"refresh_token" values.

def exchange_openshift_token(access token: str, token exchange url: str) -» str:
params: dict = {'redirect-uri': 'http://localhost'} # dummy value, required by the API
url: str = f"{token exchange url}/openshift-api-token"
response = requests.get(url, headers={'Authorization': f"Bearer {access token}"}, params=params)
if not response.ok:
print stderr(response.headers)
print stderr(response.text)

raise Exception(f"Endpoint '{response.url}' returned unexpected status code '{response.status code}'")

data: dict = response.json()
return data['token']

Main Interface

All of Requests’ functionality can be accessed by these 7 methods. They all return an in-
stance of the Response object.

requests.request(method, url, **kwargs) [source]
Constructs and sends a Request.

Parameters: e« method -method for the new Request object: GET, OPTIONS, HEAD,
POST, PUT, PATCH, or DELETE.
url — URL for the new Request object.

params — (optional) Dictionary, list of tuples or bytes to send in the
query string for the Request.

data - (optional) Dictionary, list of tuples, bytes, or file-like object to
send in the body of the Request.

json — (optional) A JSON serializable Python object to send in the
body of the Request.

. — (optional) Dictionary of HTTP Headers to send with the
Request.

» cookies — (optional) Dict or CookieJar object to send with the
Request.

o files — (optional) Dictionary of 'name': file-like-objects (or
{'name': file-tuple}) for multipart encoding upload. file-tuple

can be a 2-tuple (' filename', fileobj), 3-tuple ('filename',
fileobj, 'content type') or a 4-tuple ('filename', fileobj,

Hello,

could you check that the content in S{HOME}/.config/oc-sso_login/paas_id_token.json looks
reasonable (should be JSON) and in particular that the "access_token" field has a sensible value?

=jq ~/.config/oc-sso_login/paas_id_token.json

If this is the case, | need to understand why the access token is not properly set when making the
request to the Openshift API.
To do this, please run the following commands to make a copy of the tool and modify the debug

output:

=cp /usr/binfoc-sso_login ./oc-sso-login-debug

=sed -i 's/print_stderr(response.headers)/print_stderr("headers:", headers, " params:", params),"
oc-sso-login-debug

= python3 ./oc-sso-login-debug paas

Please paste the output here.
Just before the traceback, there should be a line like this:
= headers: {'Authorization': 'Bearer xxx'}

func openshiftApiToken(ctx *gin.Context) {

fmt.Println("Headers:", ctx.Request.Header)

authorizationHeader := ctx.Request.Header.Get("Authorization")

if authorizationHeader == "" {
ctx.JSON(401, gin.H{"error": "authorization header is missing or its value is an empty string"})
return

}

token := strings.5plit(authorizationHeader, "Bearer ")

if len(token) '= 2 {
ctx.JSON(401, gin.H{"error": "value of the Authorization header is invalid"})
return

}

Your client is sending a "Basic" header instead of "Authorization".

This might be a default behavior of python-requests.

Have you configured any .netrc (or similar) on your system?

The Basic authentication header sent by your client is referring to "anonymous:<your-email-address=".

For reference, the headers sent by your client:

Accept:[*/*]

Accept-Encoding:[gzip, deflate]

Authorization:[Basic xxx]
Forwarded:[for="[2001:1458:d00:19::100:145]";host=token-exchange.paas-stg.cern.ch;proto=https]
User-Agent:[python-requests/2.25.1]

and the ones sent from mine (also on LXPLUS9):

Accept:[*/*]

Accept-Encoding:[gzip, deflate]

Authorization:[Bearer xxx]
Forwarded:[for="[2001:1458:d00:19::100:145]";host=token-exchange.paas-stg.cern.ch;proto=https]
User-Agent:[python-requests/2.25.1]

Authentication

This document discusses using various kinds of authentication with Requests.

Many web services require authentication, and there are many different types. Below, we
outline various forms of authentication available in Requests, from the simple to the com-
plex.

Basic Authentication

Many web services that require authentication accept HTTP Basic Auth. This is the sim-
plest kind, and Requests supports it straight out of the box.

Making requests with HTTP Basic Auth is very simple:

>>> from requests.auth import HTTPBasicAuth

>>> basic = HTTPBasicAuth({'user', 'pass')

>>> requests.get('https://httpbin.org/basic-auth/user/pass', auth=basic)
<Response [200]=

In fact, HTTP Basic Auth is so common that Requests provides a handy shorthand for us-
ing it:

>>> requests.get('https://httpbin.org/basic-auth/user/pass’', auth=('user', 'p:i
<Response [200]>

Providing the credentials in a tuple like this is exactly the same as the HTTPBasicAuth ex-
ample ahove.

netrc Authentication

[f no authentication method is given with the auth argument, Requests will attempt to
et the authentication credentials for the URL's hostname from the user’s netrc file. The
netrc file overrides raw HTTP authentication headers set with headers=.

If credentials for the hostname are found, the request is sent with HTTP Basic Auth.

Digest Authentication

Another very popular form of HTTP Authentication is Digest Authentication, and
Requests supports this out of the box as well:

>>> from requests.auth import HTTPDigestAuth

>>> url = "https://httpbin.org/digest-auth/auth/user/pass’
>>> requests.get(url, auth=HTTPDigestAuth(user', 'pass'))
<Response [200]=

Don't override Authorization header when contents
are bearer token (or any other token) #3929

tomvlk opened this issue on Mar 19, 2017 - 17 comments

danrue commented on Nov 1, 2018 @ AoC

Coming here after spending several hours debugging an issue which ended up
being the presence of a ~/.netrc file. This behavior violates POLA and should be
explicitly enabled rather than enabled by default.

® 8

bors-ltd commented on Apr 23, 2019 @ -

| lost half a day because | could not log to production any more, and | couldn't find
the issue in our infrastructure. Found out it was because | stored my password in
~/.netrc and requests read it and added an Authorization header when | was
using a Bearer Instead, and got rejected from the server.

It should only happen with an explicit BasicAuth() .

© 5

