Fermilab C ENERGY Office of Science

Non-resonant searches at TeV Scale

Martin Kwok (Fermilab) On behalf of the ATLAS and CMS collaborations

LHCP 2023 - Belgrade, Serbia 25 May, 2023

Exploring the TeV scale

- SM leaves a lot of open questions that could have hints at TeV
 Hierarchy problem, DM, flavour anomalies, etc...
- LHC is the most direct probe of nature at the TeV scale
- Three theory paradigms to extend SM:

Leptoquark(LQ)

Colored states with both **baryon** and **lepton** numbers

Vector-like quark(VLQ)

Colored states with chiral symmetry

SUSY

Spacetime symmetry that relates **boson** and **fermions** in SM

‡ Fermilab

This talk will focus on recent search results from ATLAS and CMS on these topics

LQ search with lepton-quark collision

- First search for LQ using lepton-quark collisions
 - Thanks to recent advances in lepton PDF calculation [PRL]
 - Precise PDF calculations show measurable LQ cross section at LHC
- CMS utilize this technique to probe LQ- τ -q coupling
 - Same technique can be applied to 1st and 2nd generation as well
- high p_T single τ -lepton + high p_T jet
- No additional leptons (unlike traditional single-LQ production modes)

Lepton-quark production

🛠 Fermilab

LQ search with lepton-quark collision

- Event selections:
 - 3 τ -lepton decay cahnnels: (τ_h +jet, e+jet, μ +jet)
 - Divides into b-tag/no b-tag category
 - MET required to align with lepton
 - BDT to exploit different kinematics between W+Jet and signal
- Collinear mass as the final discriminant $m_{\rm coll} = m_{vis} / \sqrt{x_1 x_2}$

 $x_{1(2)}$ = momentum fraction of vis. decay of τ

for more details!

Too soft to be detected LQqqb or light jet b-tag 138 fb⁻¹ (13 TeV) τ_{h} + jet, btag, high BDT Observed Z→ II W + iets tt + jets Mis-ID VV/single-top LQ (m=2.1 TeV, λ_{ur}=1.5) Bkg. unc.

1500

m_{coll} (GeV)

2000

2500

 $m_{coll} \left(GeV \right)$

high mass

3rd generation LQ search

- Pair produced LQ decaying into $b\tau$ pairs
- Analysis channels:
 - $\tau_h \tau_h + > 1b$ and $\tau_h \tau_{e/\mu} + > 1b$
- Parametric Neural Network (PNN) trained using LQ mass as input to distinguish from top backgrounds
 - Inputs: N_h , S_T , $m(\tau_h, \text{jet})$, $\Delta R(\tau, \text{jet})$
 - Maintain good separations for ALL LQ masses
- Improves limits by as much as 45% compared to 36fb⁻¹ result

Martin Kwok I Non-resonant searches at TeV scale

First search of T' using $H \rightarrow \gamma \gamma$

- Single production via EW interaction
 - Probes higher VLQ mass
- $T \to tH(H \to \gamma\gamma)$
 - Small Br
 - Excellent mass resolution 1-2%
- Search channel categorizes based on leptonic/hadronic top candidate
- SM ttH Higgs is the major background
- Multiple BDTs trained for low, medium, high M'_T
- Signal extraction with $m_{\gamma\gamma}$

More in Antimo's talk

Events

10³

10

10

10-10-2

10

O ² ≥ 1.5

Data / I

0

0

0.1

CMS

First search of T' **using** $H \rightarrow \gamma \gamma$

- Cross section depends on coupling strength κ_T and relative width $\Gamma/M_{T'}$
- With $\kappa_T=0.25,$ and $\Gamma/M_{T'}<5~\%$, the search excludes EW production of singlet T' up to a mass of 960 GeV.
- Most sensitive search to date for T masses up to 1.1 TeV within the same production mechanism exploration

$T' \rightarrow tH(bb)/tZ(qq)$

- Same model, different leverage: hadronic decays of **boosted H/Z/t**
 - Tag boosted H/Z/t jet with variable-R jet
 - Select H/Z/t based on p_T , mass and the number of sub-jets
- Comprehensive search channels:
 - 24 regions covering *b* and *t*-associated production
 - Use "effective mass" as final fit variable:

Martin Kwok I Non-resonant searches at TeV scale

$T' \rightarrow tH(bb)/tZ(qq)$

- No significant excess observed.
- For singlet T quarks, all masses below 2.1 TeV are excluded at couplings $\kappa \ge 0.6$
- Limits extend down to $\kappa = 0.3$ for a *T*-quark mass of 1.6 TeV
 - ~60% improvement of limits w.r.t previous search

$T' \rightarrow tZ(ll)$

- Similar T' search, but with electron/muon pairs from Z
 - Optimized independently for 2ℓ and 3ℓ channel
- Smaller Br, but cleaner signature
- · Similar exclusion limit reached compared to the hadronic search
 - Exclude up to ~2 TeV for $\kappa_T \sim 0.6$

Overview of SUSY searches

- Both CMS and ATLAS have very comprehensive search program covering a wide range of SUSY signatures
- Highlight recent result with EW SUSY searches

CMS Summary plots show similar sensitivity

Electroweak SUSY

- EW SUSY searches phases space is very challenging
 - Generally smaller cross section
 - Compressed/split mass spectrum changes kinematics drastically
- CMS legacy run 2 combination
 - Utilize strength of different analysis
 - New interpretations & techniques

CMS-SUS-21-008

Electroweakino exclusion

- Extend sensitivity in both compressed and uncompressed region
 - New technique and new analysis

Slepton

- New interpretation w.r.t. 2016 combination
- Extremely rare:
 - One order of magnitude smaller cross section than EWKino!
- Compressed region driven by 2/3I soft lepton analysis
 - Reach slepton mass of ~200GeV at $\Delta m = 5 {
 m GeV}$

CMS-SUS-21-008

Stau pair production

New for LHCP23!

- Search with hadronic τ_h final states which has higher BR
- Improvements comes from
 - Better tau ID with RNN[1]
 - Increased luminosity
- First sensitivity right-handed star pair production at LHC!

More in Xuanhong's talk

Summary

- Many new results with LHC Run 2 data from ATLAS and CMS
- Seen progress made with:
 - Novel production mode (lepton-PDF)
 - Better reconstruction for physics objects (tau, boosted H/Z/t)
 - Advanced analysis techniques (PNN, BDT)
 - Comprehensive combination
- LHC Run 3 data is coming fast!
 - Apply the lessons learned in Run 2 searches

