

Recent Developments in Heavy-Ion Theory

Shanshan Cao Shandong University

QCD matter under extreme conditions

Lattice equation of state

[HotQCD, Phys. Rev. D 90 (2014) 094503]

Exploring QCD phase diagram with current and future facilities

[[]by A. Steidl]

Questions and challenges for ultra-relativistic collisions

Questions and challenges for ultra-relativistic collisions

What are the thermal and transport properties of the QGP? How do energetic particles interact with the QGP?

• Challenges: non-perturbative nature of QCD, many-body problem, ...

Different probes of nuclear matter

Hard probes jets and heavy quarks from initial high-Q² processes

Soft probes low p_T hadrons emitted by the QGP from chemical freeze-out

> Electromagnetic probes photons, di-leptons from the whole evolution

[by M. Rybar / ATLAS]

Soft hadron yields

Surprisingly good description by the thermal model

Extraction of thermal properties

Collective flow of soft hadrons

Geometric anisotropy

Collective flow coefficients:

Momentum space anisotropy

$$\frac{dN}{d\phi} = \frac{N}{2\pi} \left\{ 1 + \sum_{n} 2\nu_{n} \cos\left[n\left(\varphi - \Phi_{n}\right)\right] \right\}$$

Successful description by hydrodynamic model

With initial state fluctuations

[Qin, Int. J. Mod. Phys. E 24 (2015) 02, 1530001]

- Small shear viscosity extracted from model to data comparison
- QGP is a strongly coupled system and displays properties close to ideal fluid

Hydrodynamic calculation of v_n

[Schenke et al., PRL 108, 25231 (2012)]

model to data comparison nd displays properties close to ideal fluid

Constraints on the QGP properties

Bayesian calibration of hydrodynamic model

New challenges:

Shear and bulk viscosities of the QGP

[Bernhard, Moreland, Bass, Nature Phys. 15 (2019) 11, 1113]

• ALICE measurement of collective flow coefficients up to the 9th order [JHEP 05 (2020) 085] Expect more stringent constraints on model calculations and the extracted QGP properties

Constraints on the QGP Equation of State (EoS)

- from ALICE measurements
- Experimental data prefer an EoS that is consistent with the Lattice QCD prediction

Bayesian calibration on the p, K, π yields, v_2 of π , and two-particle femtoscopic source sizes

Constraints on the Nucleus Geometry

Nucleon distribution (Woods Saxon)

$$\rho(\vec{r}) = \left\{ 1 + \exp\left[r - R_0 \left(1 + \beta_2 \left[Y_2^0(\theta, \phi) \cos \gamma + Y_2^2(\theta, \phi)\right]\right] \right\} \right\}$$

Constraints on the Nucleus Geometry

Nucleon distribution (Woods Saxon)

$$\rho(\vec{r}) = \left\{ 1 + \exp\left[r - R_0\left(1 + \frac{\beta_2}{2}\left[Y_2^0(\theta, \phi)\cos\gamma + Y_2^2(\theta, \phi)\sin\gamma\right]\right)\right] \right\}$$

Deformation of Xe

Triaxial structure of Xe

[Bally et al., arXiv:2209.11042]

Other developments:

Nuclear Geometry of Ru and Zr

at RHIC

 Constrain the nucleon size using the Pearson coefficient
 [Giacalone *et al.*, Phys. Rev. Lett. 128 (2022) 4, 042301]

(Pearson coefficient)

Directed flow and longitudinal geometry of the QGP

Asymmetry in
$$\pm \hat{x}$$

 $v_1 = \langle p_x / p_T \rangle \neq 0$

Directed flow and longitudinal geometry of the QGP

Asymmetry in
$$\pm \hat{x}$$

 $v_1 = \langle p_x / p_T \rangle \neq 0$

[ALICE, Phys. Rev. Lett. 111 (2013) 23, 232302]

Directed flow and longitudinal geometry of the QGP

Asymmetry in
$$\pm \hat{x}$$

 $v_1 = \langle p_x / p_T \rangle \neq 0$

[ALICE, Phys. Rev. Lett. 111 (2013) 23, 232302]

Rapidity-odd distribution of v_1

• Titled energy density \rightarrow average $v_1(y)$ • Tilted baryon density $\rightarrow v_1$ split between p, \bar{p} Challenges in understanding v_1 at low beam energies

> [Bozek, Phys. Rev. C 106 (2022) 6, L061901] [Jiang, Wu, SC, Zhang, Phys. Rev. C 107 (2023) 3, 034904]

Nuclear modification of hard probes

Nuclear modification factor

 $R_{AA} \equiv rac{d^2 N^{AA}/dy dp_{\perp}}{d^2 N^{pp}/dy dp_{\perp} imes \langle N^{AA}_{coll}
angle}$

[Mueller et al., Ann. Rev. Nucl. Part. Sci. 62, 361 (2012)]

Theoretical framework of jet quenching

$$d\sigma_{h} = \sum_{abjd} f_{alp} \otimes f_{blp} \otimes d\sigma_{ab \to jd} \otimes D_{hlj}$$

- $f_{a/p}, f_{b/p} \rightarrow f_{a/A}, f_{b/B}$: cold nuclear matter (initial state) effect, e.g., shadowing, Cronin, ..., measured in *pA* collisions

$$d\tilde{\sigma}_{h} = \sum_{abjd} f_{a/A} \otimes f_{b/B} \otimes d\sigma_{ab \rightarrow jd} \otimes \tilde{D}_{h/j}$$

• $D_{h/i} \rightarrow D_{h/i}$: medium modified fragmentation function, hot nuclear matter (final state) effect • Factorization assumption: $\tilde{D}_{h/j} = \sum_{i'} P_{j \to j'} \otimes D_{h/j'}$, nuclear modification on parton j

Elastic and inelastic scatterings

Elastic (collisional)

Bjorken 1982; Bratten, Thoma 1991; Thoma, Gyulassy 1991; Mustafa, Thoma 2005; Peigne, Peshier 2006; Djordjevic 2006; Wicks *et al.* (DGLV) 2007; Qin *et al.* (AMY) 2008; ...

Systematic comparisons and reviews:

Bass *et al.*, Phys.Rev.C 79 (2009) 024901; Majumder and Van Leeuwen, Prog. Part. Nucl. Phys. 66 (2011) 41; JET, Phys. Rev.C 90 (2014) 1, 014909; Qin and Wang, Int. J. Mod. Phys. E 24 (2015) 11, 1530014

Inelastic (radiative)

BDMPS-Z: Baier-Dokshitzer-Mueller-Peigne-Schiff-Zakharov
ASW: Amesto-Salgado-Wiedemann
AMY: Arnold-Moore-Yaffe (& Caron-Huot, Gale)
GLV: Gyulassy-Levai-Vitev (& Djordjevic, Heinz)
HT: Wang-Guo (& Zhang, Wang, Majumder)

Multistage jet evolution framework

- coupled approach; ...
- Monte-Carlo event generator package for heavy-ion collisions JETSCAPE
- Open Access: GitHub github.com/JETSCAPE [arXiv:1903.07706]

• Multistage: high Q^2 – DGLAP-type of evolution; low Q^2 – transport; thermal scale – strongly

Successful perturbative QCD calculation at high pt

NLO production + parton interaction with hydrodynamic medium + fragmentation

- starting from $p_T \sim 8 \text{ GeV}$
- confirmation from future precision measurement

• A simultaneous description of charged hadron, D meson, B meson, B-decay D meson RAA's

Predict R_{AA} separation between B and h / D below 40 GeV, but similar values above – wait for

Non-perturbative interactions at low p_T

Heavy quark interaction with quasi-particles \rightarrow with a general potential

- At high p_T, the Yukawa interaction dominates heavy-quark-medium interaction
- At low to intermediate p_T, the string interaction dominates

[Xing, Qin, SC, Phys. Lett. B 838 (2023) 137733]

Constraints on jet transport coefficient inside the QGP

[JET, Phys. Rev.C 90 (2014) 1, 014909]

 $\hat{q} \equiv d\langle k_{\perp}^2 \rangle / dt \sim \langle F^{ai+}(0)F_i^{a+}(y^{-}) \rangle$

- QGP is much more opaque than cold nuclear matter to jet propagation
- Recent developments on \hat{q} extraction:

Multistage jet evolution model with Bayesian analysis

[JETSCAPE, Phys. Rev. C 104 (2021) 1, 024905]

Information field based global interference

[Xie et al., arXiv:2206.01340]

Constraints on heavy quark diffusion coefficient

Low energy heavy quark inside the QGP: diffusion (Brownian motion) Spatial diffusion coefficient: $D_s \equiv \langle |\vec{x}|^2 \rangle / (2dt)$

[Liu, Xing, Wu, Qin, SC, Wang, Eur. Phys. J. C 82 (2022) 4, 350]

- $D_{\rm s}(2\pi T) = 2 \sim 6$ extracted from model-todata comparison
- An order of magnitude smaller than pQCD, close to the strongly coupled limit
- Strongly coupling between low energy heavy quarks and the QGP
- Consistent with the lattice QCD results

Constraints on hadron formation and structure

Charmed hadron chemistry

[SC et al., Phys. Lett. B 807 (2020) 135561]

 Charm coalescence with thermal partons in QGP results in the large Λ_c/D^0 , B_s/B^+ , $D_{\rm c}/D^0$ observed at RHIC and LHC

X(3872) in heavy-ion collisions

Phys. Rev. Lett. 128 (2022) 3, 032001]

- Novel way of exploring molecule vs. tetraquark states of exotic particles [Cho and Lee, PRC 101 (2020), 2, 024902; Zhang, et al., PRL, 126 (2021) 1, 012301; Wu et al., EPJA, 57 (2021) 4, 122.]
- Need more precise data for conclusion

Constraints on the E&M field with the D meson v₁

Constraints on the E&M field with the D meson v₁

- Strong E&M field dominates at the LHC energy
- Sensitivity of the D meson v_1 to different E&M evolution profiles at the LHC

[Sun, Plumari, Greco, Phys. Lett. B, 816 (2021) 136271] [Jiang, SC, Xing, Wu, Yang, Zhang, Phys. Rev. C 105 (2022) 5, 054907]

Tilted geometry w.r.t. the beam direction dominates at the RHIC energy

Search for unique signatures of medium response

Diffusion wake (energy depletion)

• Diffusion wake predicted in the backward direction of γ/Z at $1 < p_{\rm T}^h < 2 \text{ GeV}$

[Chen, SC, Luo, Pang, Wang, PLB 777 (2018) 86] [Yang, Luo, Chen, Pang, Wang, PRL 130 (2023) 052301]

Hadron chemistry inside jets

- Richer baryons inside the QGP than inside a vacuum jet
- Enhanced baryon-to-meson ratio in AA vs. pp collisions

[Luo, Mao, Qin, Wang, Zhang, PLB 837 (2023) 137638] [Chen, SC, Luo, Pang, Wang, NPA 1005 (2021) 121934]

- Overview of soft and hard probe theories in relativistic heavy-ion collisions
- Soft hadrons probe the initial geometry and fluctuation, thermal properties, transport coefficients and EoS of the QGP
- Heavy quarks and jets probe the perturbative and non-perturbative interactions, hadronization mechanism, transport coefficient inside the QGP
- More accurate understanding of nuclear matter under extreme conditions with more precise data from future LHC runs, e.g., nucleus geometry, parton energy loss, hadron structure, strong E&M field, ...

Summary

Thank. you!

