# The limits of QGP-ike effects towards smaller systems 

from $\mathrm{Pb}-\mathrm{Pb}$ down to pp and fixed-target collisions

LHCP 2023, Belgrade - 23rd May 2023
Nicolò Jacazio (Bologna University and INFN) On behalf of ALICE, ATLAS, CMS and LHCb

## Relativistic AA collisions: the QGP

Initial state: collision of two Lorentz-contracted nuclei

- Fast thermalization $\rightarrow \tau \approx 1 \mathrm{fm} / \mathrm{c}$
- Phase transition (cross-over) to hadron gas ( $T_{c}=156.5+/-1.5 \mathrm{MeV}$ P. Steinbrecher et al. Nucl. Phys. A 982 (2019) 847)
$\rightarrow$ Color confinement: hadronization
- Chemical freeze-out ( $T_{\text {ch }} \approx 153 \mathrm{MeV}$ )
$\rightarrow$ inelastic collisions stop: particle abundances fixed
- Kinetic freeze-out ( $T_{\text {fo }} \approx 100 \mathrm{MeV}$ )
$\rightarrow$ elastic collisions stop: particle spectra fixed
- Particles fly towards detectors



## QGP in AA collisions



Collectivity: radial and anisotropic flow described by hydro models


## QGP in AA collisions



Partonic energy loss: jet quenching and energy loss hierarchy $\rightarrow R_{\mathrm{AA}}^{\pi} \sim R_{\mathrm{AA}}^{\mathrm{D}}<R_{\mathrm{AA}}^{\mathrm{B}}$

- Non prompt J/ $\psi$ produced from B decays

$$
R_{\mathrm{AA}}=\frac{1}{\left\langle\mathrm{~N}_{\mathrm{Coll}}\right\rangle} \frac{d^{2} N /\left.d y d p_{\mathrm{T}}\right|_{A A}}{d^{2} N /\left.d y d p_{\mathrm{T}}\right|_{p p}}
$$

## QGP in AA collisions





Suppression of quarkonium: increases from peripheral to central AA collisions

## QGP in AA collisions





Suppression of quarkonium: increases from peripheral to central $A A$ collisions

## Compelling evidence of QGP formation putting together SPS, RHIC and LHC results!

[^0]
## Pre LHC: pp, pA and AA

- At the LHC: QGP is formed in AA collisions $\rightarrow$ clear signatures (e.g. flow, strangeness enhancement, nuclear modification factor, jet suppression, ...)
- $\mathrm{p}-\mathrm{Pb} \rightarrow$ control experiment, disentangle cold nuclear matter effects
- pp collisions $\rightarrow$ reference for $\mathrm{Pb}-\mathrm{Pb}$



## Collective evolution: two particle correlation

- Collective expansion translates into long range modulation of particle emission in azimuth




## Collective evolution holding until pp?

- Collective expansion translates into long range modulation of particle emission in azimuth
- Also observed in $\mathrm{p}-\mathrm{Pb}$ and $\mathrm{pp} \rightarrow$ "small systems" is born
- Collective expansion also at play? Under which conditions does this not happen?



## Small systems post LHC

- Tentative definition: "system a priori too small to show characteristics of heavy ion physics and however in which we observe them" $\rightarrow$ small systems are defined from AA
- Nota bene: with this definition a system "too small" is not defined a priori $\rightarrow$ sometimes a final state looking like a large system, at least for charged particle multiplicity
- Minimum Bias pp still holds as the reference $\rightarrow$ high-multiplicity events $\sim \mathrm{O}\left(10^{-4}\right)$ of the total cross section


Decreasing systems size

## Collective motion in small systems

- High multiplicity $\rightarrow$ many partonic interactions $\rightarrow$ many color strings $\rightarrow$ color string shoving!

- PYTHIA with string shoving can reproduce long range angular correlation
- Explains presence in high-multiplicity hadron-hadron collisions


## Breaking down of the collective evolution?




- No significant long range correlation is found in $\mathrm{e}^{+} \mathrm{e}^{-}$collisions around $\Delta \Phi=0$


## And at the LHC?




- No significant long range correlation is found in $\mathrm{e}^{+e}$ - collisions around $\Delta \phi=0$
- At the LHC we can lower the multiplicity in pp collisions
- Correlation in pp is larger than that of $\mathrm{e}^{+} \mathrm{e}^{-}$at similar multiplicity


## Anisotropic flow of identified particle



ALI-PREL-503282


- $\boldsymbol{v}_{2}>\mathbf{0}$ in small systems:
low $p_{T} \rightarrow$ consistent with mass ordering intermediate $p_{T} \rightarrow$ particle type grouping
- Described by hydro with quark coalescence and jet fragmentation
$v_{2}>0$ implies some energy loss yet no jet quenching? $\rightarrow$ to be solved!


## Going smaller at the LHC: UPCs



CMS HIN-18-008 (accepted by PLB)


- Coulomb fields of moving charges equivalent to a flux of photons boosted to high energies
- $\gamma$ energies of $\sim 10 \mathrm{~s} \mathrm{GeV}$ with a 2.5 TeV Pb beam
- High multiplicity events $\rightarrow$ no clear near side ridge


## Going smaller at the LHC: UPCs



- Coulomb fields of moving charges equivalent to a flux of photons boosted to high energies
- $\gamma$ energies of $\sim 10 \mathrm{~s} \mathrm{GeV}$ with a 2.5 TeV Pb beam
- High multiplicity events $\rightarrow$ no clear near side ridge
- Non-zero $\mathbf{v}_{\mathbf{2}}$ but lower than hadron-hadron collisions!
- Caveat: $v_{2}$ coefficients vulnerable to (residual) non-flow


ATLAS
 $\sqrt{s_{N N}}=5.02 \mathrm{TeV}$, OnXn $\sqrt{s_{\text {NN }}}=5.02$
$\Sigma_{\gamma} \Delta \eta>2.5$


16

## "Baryon-to-meson"

ALICE Pb-Pb $\sqrt{s_{\mathrm{NN}}}=2.76 \mathrm{TeV},|y|<0.5$
$\square 0-5 \%,\left\langle\mathrm{~d} N_{\text {ch }} / \mathrm{d} \eta\right\rangle=1601.0$
$\square 60-80 \%,\left\langle\mathrm{~d} N_{\mathrm{ch}} / \mathrm{d} \eta\right\rangle=55.5$


- In Pb-Pb collisions mass-dependent hardening of the spectra
low- $p_{\text {т }}$ depletion intermediate- $p_{T}$ enhancement
- protons are shifted towards higher momenta
$\rightarrow$ interpreted as radial flow common velocity field ( $p=m \gamma \beta$ )


## "Baryon-to-meson"



- In Pb-Pb collisions mass-dependent hardening of the spectra

$$
\text { low- } p_{т} \text { depletion }
$$

intermediate- $p_{T}$ enhancement

- protons are shifted towards higher momenta
$\rightarrow$ interpreted as radial flow common velocity field ( $p=m \gamma \beta$ )
- Remarkable consistency across systems as a function of multiplicity
- high- $p_{T}$ : recovery of universal behavior?
"Baryon-to-meson" ratio with HF probes

- $\Lambda_{c}^{+} / \mathrm{D}^{0}$ enhanced at intermediate $\boldsymbol{p}_{\mathrm{T}}$ in central $\mathrm{Pb}-\mathrm{Pb}$ collisions (also measured up to high $p_{T}$ CMS-PAS-HIN-21-004)
- $\Lambda_{c}^{+} / \mathrm{D}^{0}$ in $\mathrm{p}-\mathrm{Pb}$ does not depend on the final-state multiplicity $\rightarrow$ similar values observed in peripheral $\mathrm{Pb}-\mathrm{Pb}$ collisions (LHCb-PAPER-2021-046)
- Comparison to $\Lambda / K_{s}^{0}$ might indicate coalescence of heavy quarks saturates earlier than for light quarks in small systems


## Strangeness enhancement in small systems



- One of the original traces of the QGP $\rightarrow$ thermal production via gluon fusion

- Enhanced production of strange hadrons wrt $\pi$ $\rightarrow$ increasing with multiplicity
- Hierarchy with strangeness content: $\mathrm{K}_{\mathrm{S}}^{0}<\Lambda(1 \mathrm{~s})<\Xi$ (2s) $<\Omega$ (3s)
- Strangeness increases with multiplicity following a universal trend


## Strangeness enhancement: more differential

Relative strangeness production:


## Strangeness enhancement: more differential

At fixed multiplicity:

Relative $\Xi$ yield increase with forward activity


At fixed multiplicity:

Relative $\Xi$ yield increase with decreasing energy

- Increase in the average fraction of strange hadrons with increasing multiplicity and decreasing ZDC energy


## Strangeness enhancement with beauty?



- Significant increase in $\mathrm{B}_{\mathrm{s}}^{0} / \mathrm{B}_{\mathrm{s}}^{0}$ with multiplicity when measured in the same rapidity range
- $b \bar{b}$ pair production at hadron colliders dominated by hard parton-parton interactions $\rightarrow$ set in the initial stages
- Possibly due to quark coalescence $\rightarrow$ enhanced $\mathrm{B}_{\mathrm{s}}^{0} / \mathrm{B}_{\mathrm{s}}^{0}$ ratio with increasing particle multiplicity


## Smaller systems with fixed target





- $\mathrm{SMOG} \rightarrow$ unique opportunity to access pA and AA collisions with smaller nuclei at the LHC
- $\mathrm{J} / \psi$ showing no discontinuity from $\mathrm{p}-\mathrm{Ne}$ to central $\mathrm{Pb}-\mathrm{Ne}$
- More data and more collision systems required to complete the picture

|  | SMOG <br> largest sample <br> $\mathrm{p}-\mathrm{Ne@} 68 \mathrm{GeV}$ | SMOG2 <br> example <br> $\mathrm{p}-\mathrm{Ar@115GeV}$ |
| :--- | :---: | :---: |
| Integrated luminosity | $\sim 100 \mathrm{nb}^{-1}$ | $100 \mathrm{pb}^{-1}$ |
| syst. error on $\mathrm{J} / \psi \mathrm{x}$-sec. | $6-7 \%$ | $2-3 \%$ |
| $\mathrm{~J} / \psi$ yield | 15 k | 35 M |
| $\mathrm{D}^{0}$ yield | 100 k | 350 M |
| $\Lambda_{\text {c }}$ yield | 1 k | 3.5 M |
| $\psi(2 \mathrm{~S}$ yield | 150 | 400 k |
| $\mathrm{Y}(1 \mathrm{~S})$ yield | 4 | 15 k |
| Low-mass $\left(5<M_{\mu \mu}<9 \mathrm{GeV} / c^{2}\right)$ Drell-Yan yield | 5 | 20 k |

- SMOG2 will be taking data in Run $3 \rightarrow$ more nuclei, $x 1000$ increase in luminosity


## Conclusions

## Small systems exhibit features typical of AA collisions

- Soft boundaries between small and large systems


## Dynamics

- Correlations in the smallest systems ( $\gamma \mathrm{p}, \gamma \mathrm{Pb}$ ) show no long range effect but overall positive flow
- Precision measurements of identified hadron flow show mass effect in small systems
- Baryon-over-meson ratio showing universal evolution among systems in the LF sector

Hadrochemistry

- Strangeness enhancement observed in small systems with light and heavy flavors
- More differential measurements of the initial state effects on strangeness


## Pushing the limits to understand small systems

Future data will help us in understanding $\rightarrow$ going smaller, more differential, larger Crucial role of the LS2 upgraded detectors


[^0]:    A. Timmins Quark-gluon plasma properties from LHC data 22 May 2023, 18:15

