BSM at Run 3 and beyond a theory perspective

Henning Bahl

LHCP, Belgrade, 24.5.2023

What has happened in Run-1 and Run-2?

What has happened in Run-1 and Run-2?

- Higgs boson discovery in 2012.

What has happened in Run-1 and Run-2?

- Higgs boson discovery in 2012.
- Many other precision measurements and searches.

What has happened in Run-1 and Run-2?

- Higgs boson discovery in 2012.
- Many other precision measurements and searches.

- Success!?
"We crave for new sensations but soon become indifferent to them. The wonders of yesterday are today common occurrences."

Nikola Tesla

"We crave for new sensations but soon become indifferent to them. The wonders of yesterday are today common occurrences."

Nikola Tesla
\rightarrow So far no evidence for BSM physics...

"We crave for new sensations but soon become indifferent to them. The wonders of yesterday are today common occurrences."
Nikola Tesla
\rightarrow So far no evidence for BSM physics...

But: motivation to search for BSM physics at the LHC is still unbroken.
"We crave for new sensations but soon become indifferent to them. The wonders of yesterday are today common occurrences."

Nikola Tesla

\rightarrow So far no evidence for BSM physics...

But: motivation to search for BSM physics at the LHC is still unbroken.

LHC Run-3 and beyond

Much more data will be collected in the next years.

LHC Run-3 and beyond

Much more data will be collected in the next years.
\rightarrow The LHC program has just started.

Unexplored BSM signatures

What have we missed so far?

Uncovered BSM signatures

Uncovered BSM signatures

- Many examples of well-motivated BSM signatures which evade current searches.

Uncovered BSM signatures

- Many examples of well-motivated BSM signatures which evade current searches.
- Examples:
- Axion-like particle (ALP) with large couplings to vector bosons. [Bonilla et al. 2202.03450]
- Dark matter searches with a balanced $E_{T, \text { miss }}$ distribution. [Adan, HB et al. 2112.12656,2302.04892]

See Victor M.
Lozano's talk on Monday

- Electroweakino searches with soft photon + hard jet + $E_{T, \text { miss }}$.[Baum et al. 2303.01523]
- ...

I. $\underset{I}{I}$

Uncovered BSM signatures

- Many examples of well-motivated BSM signatures which evade current searches.
- Examples:
- Axion-like particle (ALP) with large couplings to vector bosons. [Bonilla et al. 2202.03450]
- Dark matter searches with a balanced $E_{T, \text { miss }}$ distribution. [Adan, HB et al. 2112.12656,2302.04892]

See Victor M. Lozano's talk on Monday

- Electroweakino searches with soft photon + hard jet + $E_{T, \text { miss }}$. [Baum et al. 2303.01523]
- ...

\rightarrow Discuss one further example here: bosonic charged Higgs boson decays.

I

Unexplored signatures - bosonic $H^{ \pm}$boson decays
 [HB, Wittbrodt, Stefaniak, 2103.07484]

2HDM: CP-even h, H, CP-odd A, and charged $H^{ \pm}$boson Exemplary benchmark plane for $H^{ \pm} \rightarrow W^{ \pm} A$ decays:

- Large $\mathrm{BR}\left(H^{ \pm} \rightarrow W^{ \pm} A, W^{ \pm} H\right)$ expected if decay kinematically allowed.
- Also large production $\mathrm{XS} \Rightarrow \mathcal{O}(1) \mathrm{pb}$ signal rates possible.

But so far no comprehensive searches. (existing searches limited to specific mass configurations)

Other scenarios and signatures

- Various scenarios with distinct phenomenology can be constructed:
- $H^{ \pm} \rightarrow W^{ \pm} h_{\mathrm{BSM}}$ or $H^{ \pm} \rightarrow W^{ \pm} A$ dominant,
- light $h_{\text {BSM }}\left(m_{h_{\text {BSM }}}<m_{h_{125}}\right)$,
- leptophilic $h_{\text {BSM }}$,
- fermiophobic h_{BSM},
- ...
- Different production mechanisms can be investigated.
- Lot of activities on the pheno side.
[..., Krab et al. 2210.09416, Bhatia et al. 2212.14363, Kim et al. 2302.05457, Mondal et al. 2304.07719, Fu \& Gao, 2304.07782, Moretti \& Song 2304.12627, Sanyal \& Wang 2305.00659, Li et al. 2305.05788]

Production process	Higgs decay processes	Final state particles
$p p \rightarrow H^{ \pm} t b$	$H^{ \pm} \rightarrow W^{ \pm} \phi$ and $\phi \rightarrow\left\{\begin{array}{l}b b \\ \tau \tau \\ W W \\ Z Z \\ \gamma \gamma\end{array}\right.$	$t b W^{ \pm}+\left[\begin{array}{c}b b \\ \tau \tau \\ W W \\ Z Z \\ \gamma \gamma\end{array}\right]$
$p p \rightarrow H^{ \pm} \phi$	$H^{ \pm} \rightarrow W^{ \pm} \phi$ and $\phi \rightarrow\left\{\begin{array}{l}b b \\ \tau \tau \\ W W \\ Z Z \\ \gamma \gamma\end{array}\right.$	$W^{ \pm}+\left[\begin{array}{c}b b \\ \tau \tau \\ W W \\ Z Z \\ \gamma \gamma\end{array}\right] \otimes\left[\begin{array}{c}b b \\ \tau \tau \\ W W \\ Z Z \\ \gamma \gamma\end{array}\right]$
$p p \rightarrow H^{ \pm} W^{\mp}$	$H^{ \pm} \rightarrow W^{ \pm} \phi$ and $\phi \rightarrow\left\{\begin{array}{l}b b \\ \tau \tau \\ W W \\ Z Z\end{array}\right.$	$W^{ \pm} W^{\mp}+\left[\begin{array}{c}b b \\ \tau \tau \\ W W \\ Z Z \\ \gamma \gamma\end{array}\right]$

\rightarrow Rich phenomenology waiting to be explored experimentally!

Search for rare processes

 BSM decays of SM particles
Search for rare processes - top-quark decays

Top quarks are produced in large numbers at the LHC:

- $\sigma_{t t}^{13.6 ~ T e V} \simeq 900 \mathrm{pb}$
- $\rightarrow \sim 5 \cdot 10^{8}$ top quarks at the end of Run-3
- $\rightarrow \sim 5 \cdot 10^{9}$ top quarks at the end of HL-LHC
\Rightarrow Unique opportunity to search FCNC via rare top-quark decays induced by BSM physics!

Search for rare processes - top-quark decays

Top quarks are produced in large numbers at the LHC:

- $\sigma_{t t}^{13.6 ~ T e V} \simeq 900 \mathrm{pb}$
- $\rightarrow \sim 5 \cdot 10^{8}$ top quarks at the end of Run-3
- $\rightarrow \sim 5 \cdot 10^{9}$ top quarks at the end of HL-LHC
\Rightarrow Unique opportunity to search FCNC via rare top-quark decays induced by BSM physics!

Existing experimental searches:

Search for rare processes - top-quark decays

Top quarks are produced in large numbers at the LHC:

- $\sigma_{t t}^{13.6 ~ T e V} \simeq 900 \mathrm{pb}$
- $\rightarrow \sim 5 \cdot 10^{8}$ top quarks at the end of Run-3
- $\rightarrow \sim 5 \cdot 10^{9}$ top quarks at the end of HL-LHC
\Rightarrow Unique opportunity to search FCNC via rare top-quark decays induced by BSM physics!

Existing experimental searches:

- SM final states: $t \rightarrow H q, Z q, \gamma q, \ell^{+} \ell^{-} q$

Search for rare processes - top-quark decays

Top quarks are produced in large numbers at the LHC:

- $\sigma_{t \bar{t}}^{13.6 \mathrm{TeV}} \simeq 900 \mathrm{pb}$
- $\rightarrow \sim 5 \cdot 10^{8}$ top quarks at the end of Run-3
- $\rightarrow \sim 5 \cdot 10^{9}$ top quarks at the end of HL-LHC
\Rightarrow Unique opportunity to search FCNC via rare top-quark decays induced by

[CMS 2201.07859] BSM physics!

Existing experimental searches:

- SM final states: $t \rightarrow H q, Z q, \gamma q, \ell^{+} \ell^{-} q$
- BSM final states: $t \rightarrow X(\rightarrow b \bar{b}) q$ with X being a scalar

Rare top decays - EFT classification

- Rare top-quark decays with SM final state can be parameterized using SMEFT (see e.g. [Bradshaw \& Chang 2304.06063]).

$$
\mathcal{L}=\mathcal{L}_{\mathrm{SM}}+\sum_{i, n} \frac{c_{n}}{\Lambda^{i}} \mathcal{O}_{i}^{n}
$$

Rare top decays - EFT classification

- Rare top-quark decays with SM final state can be parameterized using SMEFT (see e.g. [Bradshaw \& Chang 2304.06063]).

$$
\mathcal{L}=\mathcal{L}_{\mathrm{SM}}+\sum_{i, n} \frac{c_{n}}{\Lambda^{i}} \mathcal{O}_{i}^{n}
$$

SMEFT

SMEFT
Dim 6
$\left(\bar{Q}_{i} u_{j}\right)\left(\bar{Q}_{k} d_{\ell}\right)$
$\left(\bar{Q}_{i} u_{j}\right)\left(\bar{L}_{k} e_{\ell}\right)$
$\left(\Phi^{\dagger} \Phi\right)\left(\bar{Q}_{i} u_{j} \tilde{\Phi}\right)$
$\left(\Phi^{\dagger} \stackrel{H}{D}_{\mu} \Phi\right)\left(\bar{Q}_{i}^{\dagger} \gamma^{\mu} Q_{j}\right)$
$\left(\bar{Q}_{i} \sigma^{\mu \nu} \tau^{A} u_{j}\right) \widetilde{\Phi} G_{\mu \nu}^{A}$
$\left(\bar{Q}_{i} \sigma^{\mu \nu} \tau^{I} u_{j}\right) \widetilde{\Phi} W_{\mu \nu}^{I}$
$\left(\bar{Q}_{i} \sigma^{\mu \nu} u_{j}\right) \widetilde{\Phi} B_{\mu \nu}$

Rare top decays - EFT classification

- Rare top-quark decays with SM final state can be parameterized using SMEFT (see e.g. [Bradshaw \& Chang 2304.06063]).

$$
\mathcal{L}=\mathcal{L}_{\mathrm{SM}}+\sum_{i, n} \frac{c_{n}}{\Lambda^{i}} \mathcal{O}_{i}^{n}
$$

- Additionally, consider the possibility of light BSM particles:
- scalar singlet S (e.g. ALP),
- fermionic singlet N (e.g. sterile neutrino),
- light gauge boson Z^{\prime} (e.g. from gauging $B_{3}-L_{3}$),
- not discussed here: light charged Higgs boson.

SMEFT

$\operatorname{Dim} 6$
$\left(\bar{Q}_{i} u_{j}\right)\left(\bar{Q}_{k} d_{\ell}\right)$
$\left(\bar{Q}_{i} u_{j}\right)\left(\bar{L}_{k} e_{\ell}\right)$
$\left(\Phi^{\dagger} \Phi\right)\left(\bar{Q}_{i} u_{j} \tilde{\Phi}\right)$
$\left(\Phi^{\dagger} i \stackrel{\leftrightarrow}{D}_{\mu} \Phi\right)\left(\bar{Q}_{i}^{\dagger} \gamma^{\mu} Q_{j}\right)$
$\left(\bar{Q}_{i} \sigma^{\mu \nu} \tau^{A} u_{j}\right) \widetilde{\Phi} G_{\mu \nu}^{A}$
$\left(\bar{Q}_{i} \sigma^{\mu \nu} \tau^{I} u_{j}\right) \widetilde{\Phi} W_{\mu \nu}^{I}$
$\left(\bar{Q}_{i} \sigma^{\mu \nu} u_{j}\right) \widetilde{\Phi} B_{\mu \nu}$

\Rightarrow New operators and final states.

Rare top decays - EFT classification

- Rare top-quark decays with SM final state can be parameterized using SMEFT (see e.g. [Bradshaw \& Chang 2304.06063]).

$$
\mathcal{L}=\mathcal{L}_{\mathrm{SM}}+\sum_{i, n} \frac{c_{n}}{\Lambda^{i}} \mathcal{O}_{i}^{n}
$$

- Additionally, consider the possibility of light BSM particles:
- scalar singlet S (e.g. ALP),
- fermionic singlet N (e.g. sterile neutrino),
- light gauge boson Z^{\prime} (e.g. from gauging $B_{3}-L_{3}$),
- not discussed here: light charged Higgs boson.

SMEFT
Dim 6
$\left(\bar{Q}_{i} u_{j}\right)\left(\bar{Q}_{k} d_{\ell}\right)$
$\left(\bar{Q}_{i} u_{j}\right)\left(\bar{L}_{k} e_{\ell}\right)$
$\left(\Phi^{\dagger} \Phi\right)\left(\bar{Q}_{i} u_{j} \tilde{\Phi}\right)$
$\left(\Phi^{\dagger} i \stackrel{\leftrightarrow}{D}_{\mu} \Phi\right)\left(\bar{Q}_{i}^{\dagger} \gamma^{\mu} Q_{j}\right)$
$\left(\bar{Q}_{i} \sigma^{\mu \nu} \tau^{A} u_{j}\right) \widetilde{\Phi} G_{\mu \nu}^{A}$
$\left(\bar{Q}_{i} \sigma^{\mu \nu} \tau^{I} u_{j}\right) \widetilde{\Phi} W_{\mu \nu}^{I}$
$\left(\bar{Q}_{i} \sigma^{\mu \nu} u_{j}\right) \widetilde{\Phi} B_{\mu \nu}$

BSM EFT

$\operatorname{Dim} 5$
$S\left(\bar{Q}_{i} \not D Q_{j}\right)$
$S\left(\Phi^{\dagger} \bar{Q}_{i} u_{j}\right)$
$\operatorname{Dim} 6$
$\left(\bar{Q}_{i} d_{j}\right)\left(\bar{L}_{k} N_{\ell}\right)$
$\left(\bar{Q}_{i} Q_{j}\right)\left(\bar{N}_{k} N_{\ell}\right)$
$S^{2}\left(\bar{Q}_{i} \not D Q_{j}\right)$
$S^{2}\left(\Phi^{\dagger} \bar{Q}_{i} u_{j}\right)$
$\left(\bar{Q}_{i} \sigma^{\mu \nu} u_{j}\right) \widetilde{\Phi} F_{\mu \nu}^{\prime}$

\Rightarrow New operators and final states.

Rare top-quark decays - expect BRs

[HB, Koren, Wang, work in progress]

- Investigate operators individually.
- Set $\Lambda=1 \mathrm{TeV}, c_{i}^{n}=1$, and $m_{S}=m_{N}=m_{Z^{\prime}}=10 \mathrm{GeV}$ as a benchmark.
- Calculate branching ratio for different final states.

Rare top-quark decays - expect BRs

[HB, Koren, Wang, work in progress]

- Investigate operators individually.
- Set $\Lambda=1 \mathrm{TeV}, c_{i}^{n}=1$, and $m_{S}=m_{N}=m_{Z^{\prime}}=10 \mathrm{GeV}$ as a benchmark.
- Calculate branching ratio for different final states.

Rare top-quark decays - expect BRs

[HB, Koren, Wang, work in progress]

- Investigate operators individually.
- Set $\Lambda=1 \mathrm{TeV}, c_{i}^{n}=1$, and $m_{S}=m_{N}=m_{Z^{\prime}}=10 \mathrm{GeV}$ as a benchmark.
- Calculate branching ratio for different final states.
- Sizeable branching ratios/number of events for various operators.
- Various final states which can be probed with current and future data.
\Rightarrow Huge potential for future searches!

Rare top-quark decays II

- Decays of BSM particles can be parameterized by adding additional operators (not involving the top-quark):
- e.g. $S \rightarrow b \bar{b}, \tau^{+} \tau^{-}, \gamma \gamma$ etc.
(see e.g. [Banerjee et al. 1806.02836, Bhattacharyya et al. 2212.09061]),
- potentially long-lived depending on size of Wilson coefficients (see e.g. discussion of $t \rightarrow \mathrm{ALP}+q$ in [Carmona et al. 2202.09371]).

[Carmona et al. 2202.09371]

Rare top-quark decays II

- Decays of BSM particles can be parameterized by adding additional operators (not involving the top-quark):
- e.g. $S \rightarrow b \bar{b}, \tau^{+} \tau^{-}, \gamma \gamma$ etc.
(see e.g. [Banerjee et al. 1806.02836, Bhattacharyya et al. 2212.09061]),
- potentially long-lived depending on size of Wilson coefficients (see e.g. discussion of $t \rightarrow \mathrm{ALP}+q$ in [Carmona et al. 2202.09371]).

[Carmona et al. 2202.09371]
- In the minimal set-up including only operators involving the top quark the BSM particles can either be
- stable if only operators involving two BSM particles are considered (e.g. due to \mathbb{Z}_{2} symmetry) \rightarrow missing energy signature,
- decay via loop-induced corrections: e.g. $N \rightarrow v b \bar{b}$ with N being potentially long-lived.

Rare top-quark decays II

- Decays of BSM particles can be parameterized by adding additional operators (not involving the top-quark):
- e.g. $S \rightarrow b \bar{b}, \tau^{+} \tau^{-}, \gamma \gamma$ etc.
(see e.g. [Banerjee et al. 1806.02836, Bhattacharyya et al. 2212.09061]),
- potentially long-lived depending on size of Wilson coefficients (see e.g. discussion of $t \rightarrow$ ALP $+q$ in [Carmona et al. 2202.09371]).

[Carmona et al. 2202.09371]
- In the minimal set-up including only operators involving the top quark the BSM particles can either be
- stable if only operators involving two BSM particles are considered (e.g. due to \mathbb{Z}_{2} symmetry) \rightarrow missing energy signature,
- decay via loop-induced corrections: e.g. $N \rightarrow v b \bar{b}$ with N being potentially long-lived.

Many interesting signatures for prompt and long-lived searches.

Other searches for rare BSM decays

Also other SM particles could have rare BSM decays:

- rare Higgs boson decays (\rightarrow see Maxwell Chertok's on Friday),
- rare Z boson decays,
-

Going global

Exploiting different LHC channels and non-collider measurements

Complementarity with non-collider experiments - electroweak phase transitions

- Shape of the Higgs potential largely unconstrained.
- Zero-temperature potential can be probed e.g. via di-Higgs boson production.
- How can be probe the thermal development of the Higgs potential?
\rightarrow Has there been a strong first-order phase transition $\left(\xi_{c}>1\right)$?

Complementarity with non-collider experiments - electroweak phase transitions

- Shape of the Higgs potential largely unconstrained.
- Zero-temperature potential can be probed e.g. via di-Higgs boson production.
- How can be probe the thermal development of the Higgs potential?
\rightarrow Has there been a strong first-order phase transition $\left(\xi_{c}>1\right)$?

[^0]
Complementarity with non-collider experiments - electroweak phase transitions

- Shape of the Higgs potential largely unconstrained.
- Zero-temperature potential can be probed e.g. via di-Higgs boson production.
- How can be probe the thermal development of the Higgs potential?
\rightarrow Has there been a strong first-order phase transition $\left(\xi_{c}>1\right)$?

[^1]Exploit complementarity between different LHC channels + GW observatories.

Complementarity with non-collider experiments

- Higgs CP
[HB et al. 2202.11753; see also Brod et al. 2203.03736, Fuchs et al. 2003.00099, ...]

Complementarity with non-collider experiments

- Higgs CP
[HB et al. 2202.11753; see also Brod et al. 2203.03736, Fuchs et al. 2003.00099, ...]

Can CP-violating Higgs couplings help to explain the baryon asymmetry Y_{B} of the Universe?

Complementarity with non-collider experiments

- Higgs CP
[HB et al. 2202.11753; see also Brod et al. 2203.03736, Fuchs et al. 2003.00099, ...]

Can CP-violating Higgs couplings help to explain the baryon asymmetry Y_{B} of the Universe?

- CP-odd Higgs-fermion couplings can still be sizeable. Consider here $\mathcal{L}_{\tau}=\frac{y_{\tau}^{S M}}{\sqrt{2}} \bar{\tau}\left(c_{\tau}+i \gamma_{5} \tilde{c}_{\tau}\right) \tau H$.

Complementarity with non-collider experiments

- Higgs CP
[HB et al. 2202.11753; see also Brod et al. 2203.03736, Fuchs et al. 2003.00099, ...]

Can CP-violating Higgs couplings help to explain the baryon asymmetry Y_{B} of the Universe?

- CP-odd Higgs-fermion couplings can still be sizeable. Consider here $\mathcal{L}_{\tau}=\frac{y_{\tau}^{S M}}{\sqrt{2}} \bar{\tau}\left(c_{\tau}+i \gamma_{5} \tilde{c}_{\tau}\right) \tau H$.
- Constraints arise from
- LHC measurements and
- electric dipole moment (EDM) measurements.

Complementarity with non-collider experiments

- Higgs CP
[HB et al. 2202.11753; see also Brod et al. 2203.03736, Fuchs et al. 2003.00099, ...]

Can CP-violating Higgs couplings help to explain the baryon asymmetry Y_{B} of the Universe?

- CP-odd Higgs-fermion couplings can still be sizeable. Consider here $\mathcal{L}_{\tau}=\frac{y_{\tau}^{S M}}{\sqrt{2}} \bar{\tau}\left(c_{\tau}+i \gamma_{5} \tilde{c}_{\tau}\right) \tau H$.
- Constraints arise from
- LHC measurements and
- electric dipole moment (EDM) measurements.
\Rightarrow Exploit complementarity!

Complementarity with non-collider experiments

- Higgs CP
[HB et al. 2202.11753; see also Brod et al. 2203.03736, Fuchs et al. 2003.00099, ...]

Can CP-violating Higgs couplings help to explain the baryon asymmetry Y_{B} of the Universe?

- CP-odd Higgs-fermion couplings can still be sizeable. Consider here $\mathcal{L}_{\tau}=\frac{y_{\tau}^{S M}}{\sqrt{2}} \bar{\tau}\left(c_{\tau}+i \gamma_{5} \tilde{c}_{\tau}\right) \tau H$.
- Constraints arise from
- LHC measurements and
- electric dipole moment (EDM) measurements.
\Rightarrow Exploit complementarity!
- Global fit to LHC and EDM data.

Complementarity with non-collider experiments - Higgs CP

[HB et al. 2202.11753; see also Brod et al. 2203.03736, Fuchs et al. 2003.00099, ...]

Can CP-violating Higgs couplings help to explain the baryon asymmetry Y_{B} of the Universe?

- CP-odd Higgs-fermion couplings can still be sizeable. Consider here $\mathcal{L}_{\tau}=\frac{y_{\tau}^{S M}}{\sqrt{2}} \bar{\tau}\left(c_{\tau}+i \gamma_{5} \tilde{\tau}_{\tau}\right) \tau H$.
- Constraints arise from
- LHC measurements and
- electric dipole moment (EDM) measurements.
\Rightarrow Exploit complementarity!
- Global fit to LHC and EDM data.

Complementarity with non-collider experiments - Higgs CP
 [HB et al. 2202.11753; see also Brod et al. 2203.03736, Fuchs et al. 2003.00099, ...]

Can CP-violating Higgs couplings help to explain the baryon asymmetry Y_{B} of the Universe?

- CP-odd Higgs-fermion couplings can still be sizeable. Consider here $\mathcal{L}_{\tau}=\frac{y_{\tau}^{S M}}{\sqrt{2}} \bar{\tau}\left(c_{\tau}+i \gamma_{5} \tilde{\tau}_{\tau}\right) \tau H$.
- Constraints arise from
- LHC measurements and
- electric dipole moment (EDM) measurements.
\Rightarrow Exploit complementarity!
- Global fit to LHC and EDM data.

CP violation in tau-Yukawa coupling could give sizeable contribution to baryon asymmetry!

Complementarity with non-collider experiments - Higgs CP
 [HB et al. 2202.11753; see also Brod et al. 2203.03736, Fuchs et al. 2003.00099, ...]

Can CP-violating Higgs couplings help to explain the baryon asymmetry Y_{B} of the Universe?

- CP-odd Higgs-fermion couplings can still be sizeable. Consider here $\mathcal{L}_{\tau}=\frac{y_{\tau}^{S M}}{\sqrt{2}} \bar{\tau}\left(c_{\tau}+i \gamma_{5} \tilde{\tau}_{\tau}\right) \tau H$.
- Constraints arise from
- LHC measurements and
- electric dipole moment (EDM) measurements.
\Rightarrow Exploit complementarity!
- Global fit to LHC and EDM data.

CP violation in tau-Yukawa coupling could give sizeable contribution to baryon asymmetry!

\rightarrow See talk by Marco Menen this afternoon for more details.
\rightarrow Dedicated LHC Higgs WG 2 effort.

Conclusions

BSM at Run-3 and beyond

Conclusions: objectives for Run-3 and beyond

Motivation to search for BSM physics is unbroken.

How to go forward?

- Improve upon existing searches/measurements using increased luminosities.
- Use new analysis methods to fully exploit data.
- Look out for uncovered signatures.
- Ensure reinterpretability of results.
- Going global: exploit complementarity between different channels and with non-collider measurements.

Conclusions: objectives for Run-3 and beyond

Motivation to search for BSM physics is unbroken.

How to go forward?

- Improve upon existing searches/measurements using increased luminosities.
- Use new analysis methods to fully exploit data.
- Look out for uncovered signatures.
- Ensure reinterpretability of results.
- Going global: exploit complementarity between different channels and with non-collider measurements.

Thanks for your attention!

Unexplored signatures - bosonic $H^{ \pm}$decays

- Charged Higgs bosons appear in many BSM extensions of the SM Higgs sector.
- Existing experimental searches:

Production process	Higgs decay	Final state	\# of exp. searches
$p p \rightarrow H^{ \pm} t b$	$H^{ \pm} \rightarrow \tau \nu_{\tau}$	$t b\left(\tau \nu_{\tau}\right)$	7
$p p \rightarrow H^{ \pm} t b$	$H^{ \pm} \rightarrow t b$	$t b t b$	4
$p p \rightarrow t t, t \rightarrow H^{ \pm} b$	$H^{ \pm} \rightarrow c b$	$t b c b$	2
$p p \rightarrow t t, t \rightarrow H^{ \pm} b$	$H^{ \pm} \rightarrow c s$	$t b c s$	3
$p p \rightarrow H^{ \pm} q q^{\prime}(\mathrm{VBF})$	$H^{ \pm} \rightarrow W^{ \pm} Z$	$W^{ \pm} Z q q^{\prime}$	4
$p p \rightarrow t t, t \rightarrow H^{ \pm} b$	$H^{ \pm} \rightarrow W^{ \pm} A$	$t b W^{ \pm} \mu^{+} \mu^{-}$	3
$p p \rightarrow t t, t \rightarrow H^{ \pm} b$	$H^{ \pm} \rightarrow W^{ \pm} H$	$t b W^{ \pm} \tau^{+} \tau^{-}$	1
$p p \rightarrow H \rightarrow H^{ \pm} W^{\mp}$	$H^{ \pm} \rightarrow W^{ \pm} h$	$W^{ \pm} W^{\mp} b b$	1

$\rightarrow 16$ searches in fermionic channels, 9 searches in boson channels (of which 4 only appear in triplet extension)

Unexplored signatures - bosonic $H^{ \pm}$decays

- Charged Higgs bosons appear in many BSM extensions of the SM Higgs sector.
- Existing experimental searches:

Production process	Higgs decay	Final state	\# of exp. searches
$p p \rightarrow H^{ \pm} t b$	$H^{ \pm} \rightarrow \tau \nu_{\tau}$	$t b\left(\tau \nu_{\tau}\right)$	7
$p p \rightarrow H^{ \pm} t b$	$H^{ \pm} \rightarrow t b$	$t b t b$	4
$p p \rightarrow t t, t \rightarrow H^{ \pm} b$	$H^{ \pm} \rightarrow c b$	$t b c b$	2
$p p \rightarrow t t, t \rightarrow H^{ \pm} b$	$H^{ \pm} \rightarrow c s$	$t b c s$	3
$p p \rightarrow H^{ \pm} q q^{\prime}(\mathrm{VBF})$	$H^{ \pm} \rightarrow W^{ \pm} Z$	$W^{ \pm} Z q q^{\prime}$	4
$p p \rightarrow t t, t \rightarrow H^{ \pm} b$	$H^{ \pm} \rightarrow W^{ \pm} A$	$t b W^{ \pm} \mu^{+} \mu^{-}$	3
$p p \rightarrow t t, t \rightarrow H^{ \pm} b$	$H^{ \pm} \rightarrow W^{ \pm} H$	$t b W^{ \pm} \tau^{+} \tau^{-}$	1
$p p \rightarrow H \rightarrow H^{ \pm} W^{\mp}$	$H^{ \pm} \rightarrow W^{ \pm} h$	$W^{ \pm} W^{\mp} b b$	1

$\rightarrow 16$ searches in fermionic channels, 9 searches in boson channels (of which 4 only appear in triplet extension)

Are the bosonic channels theoretically less motivated?

Bosonic charged Higgs boson couplings

Bosonic charged Higgs boson couplings

- Radiative electroweak: $H^{ \pm} H^{\mp} \gamma, H^{ \pm} H^{\mp} Z$;

Bosonic charged Higgs boson couplings

- Radiative electroweak: $H^{ \pm} H^{\mp} \gamma, H^{ \pm} H^{\mp} Z$;
- triple Higgs: $H^{ \pm} H^{\mp} h_{i}, H^{ \pm} H^{\mp} a_{i}$

Bosonic charged Higgs boson couplings

- Radiative electroweak: $H^{ \pm} H^{\mp} \gamma, H^{ \pm} H^{\mp} Z$;
- triple Higgs: $H^{ \pm} H^{\mp} h_{i}, H^{ \pm} H^{\mp} a_{i}$
- mixed electroweak: $H^{ \pm} W^{\mp} Z, H^{ \pm} W^{\mp} \gamma$ (only in triplet extensions)

Bosonic charged Higgs boson couplings

- Radiative electroweak: $H^{ \pm} H^{\mp} \gamma, H^{ \pm} H^{\mp} Z$;
- triple Higgs: $H^{ \pm} H^{\mp} h_{i}, H^{ \pm} H^{\mp} a_{i}$
- mixed electroweak: $H^{ \pm} W^{\mp} Z, H^{ \pm} W^{\mp} \gamma$ (only in triplet extensions)
- Higgs-electroweak: $H^{ \pm} W^{\mp} h_{i}, H^{ \pm} W^{\mp} a_{i}$

Bosonic charged Higgs boson couplings

- Radiative electroweak: $H^{ \pm} H^{\mp} \gamma, H^{ \pm} H^{\mp} Z$;
- triple Higgs: $H^{ \pm} H^{\mp} h_{i}, H^{ \pm} H^{\mp} a_{i}$
- mixed electroweak: $H^{ \pm} W^{\mp} Z, H^{ \pm} W^{\mp} \gamma$ (only in triplet extensions)
- Higgs-electroweak: $H^{ \pm} W^{\mp} h_{i}, H^{ \pm} W^{\mp} a_{i}$

Bosonic charged Higgs boson couplings

- Radiative electroweak: $H^{ \pm} H^{\mp} \gamma, H^{ \pm} H^{\mp} Z$;
- triple Higgs: $H^{ \pm} H^{\mp} h_{i}, H^{ \pm} H^{\mp} a_{i}$
- mixed electroweak: $H^{ \pm} W^{\mp} Z, H^{ \pm} W^{\mp} \gamma$ (only in triplet extensions)
- Higgs-electroweak: $H^{ \pm} W^{\mp} h_{i}, H^{ \pm} W^{\mp} a_{i}$

In the 2HDM, we have (with h_{i} being the CP-even Higgs bosons ordered by mass)

$$
g\left(H^{ \pm} W^{\mp} h_{1}\right) \propto \cos (\beta-\alpha), \quad g\left(H^{ \pm} W^{\mp} h_{2}\right) \propto \sin (\beta-\alpha), \quad g\left(H^{ \pm} W^{\mp} A\right)=-\frac{g}{2}
$$

Alignment limit: h_{1} SM-like $\Rightarrow \cos (\beta-\alpha) \rightarrow 0 ; h_{2}$ SM-like $\Rightarrow \sin (\beta-\alpha) \rightarrow 0$
\Rightarrow Charged Higgs boson couplings to W boson and $h_{\text {BSM }}$ or A boson close to maximum!

Unexplored signatures — bosonic $H^{ \pm}$boson decays

[HB, Wittbrodt, Stefaniak, 2103.07484]
2HDM parameter scan applying theoretical and experimental constraints:

$$
\text { Example scenario with } H^{ \pm} \rightarrow W^{ \pm} A
$$

$$
\begin{array}{r}
\sin (\beta-\alpha)=1 \\
\tan \beta=3 \\
m_{h_{B S M}}=m_{H^{ \pm}}
\end{array}
$$

$\sigma\left(b \bar{b} \rightarrow H^{ \pm} W^{\mp} \rightarrow W^{ \pm} W^{\mp} A\right)$

Large rates possible which are not constrained by existing searches!

Rare top decays - mass dependencies

S and Z^{\prime} loop-induced decays

[^0]: [Goncalves et al. 2108.05356; see also Biekötter et al. 2208.14466, ...]

[^1]: [Goncalves et al. 2108.05356; see also Biekötter et al. 2208.14466, ...]

