

Heavy resonance searches

Miaoran Lu University of Iowa On behalf of the ATLAS and CMS collaboration

Heavy resonance search at collider experiments

Standard Model (SM) is successful for particle physics

SM shortcomes (Hierarchy problem, Unific.of Gravity, Dark Matter/Energy) indicate the existence of New Physics \rightarrow Beyond Standard Model (BSM) theories

Heavy resonance search is a good way to probe new physics

- > Heavy resonances are predicted in many new physics models:
 - Two-Higgs-doublet model (A, H[±], ...)
 - Heavy Vector triplet (W', Z')
 - Many more...
- > A straight-forward way to observe new physics/particles:
 - Featured kinematics (e.g., "invariant mass") could make a bump on a rather flat SM background spectrum, indicating an unknown resonance particle
 - High energy collider like LHC makes it possible to search for "heavy" resonances at high energy

ATLAS/CMS heavy resonance searches results

Results shown today are based on LHC Run2 pp collision data at Js= 13 TeV.

~140 fb⁻¹ good-for-physics data collected

Many new results since last LHCP, covering wide range of models

Only part of the latest ATLAS/CMS results will be shown today

√s=13 TeV, 140 fb⁻¹ 10^{9} Z´+ E (2TeV) ATLAS-CONF-2023-022 10^{8} **Two-body final states:** jet+Y, where Y can be a SSM Z' / W' (2.2TeV) 10 lepton (electron or muon), a photon, or another jet Z´W (DM) (2*TeV*) 10⁶ — 10 pb AR 10⁵ ---- 1 pb AR AutoEncoder (AE): 0.1 pb AR Three andmal 10^{4} Commonly used with 10^{3} regions (AR) are unsupervised learning 10^{2} chosen x_i \hat{x}_i Trained with 1% randomly 10 selected events 10^{-1} Alerts to anomalous 10^{-2} -10_9 --8 -5 loss = events with high loss log (Loss) Events 10⁴ [qd] atent 200 node 400 nodes Leaky ReLU 1287 node: Leaky ReLI 95% CL Upper Limits $\chi^{2}/ndf = 0.94$ $\rightarrow \sigma_x/m_x = 0$ Obs. **ഥ** 10⁻ $\cdots \sigma_x/m_x = 0$ Exp. Invariant mass spectra in each anomaly region × $\pm 1\sigma$ are examined for any localized excesses w 10 -----±2σ 10^{2} Х $--- \sigma_x/m_x = 0.15$ Obs. – Data 10 pb AR **T** 10 $\sigma_{\rm v}/m_{\rm v} = 0.15$ Exp. 10 Largest excess reported by BumpHunter at $m_{j\mu}$ Background fit Х = 4.8 TeV with %0 width in 10 pb AR: local b₁₀- $' + \mu$ significance of 2.9σ 10-4 Sign No significant resonance-like signal found 3×10⁻

Events

10¹⁰

5678

m [TeV

ATLAS Preliminary

 $tbH^+(2 TeV)$

 $W_{KK} \rightarrow W \phi (2 TeV)$

m_v [TeV

Vector-like quark $T' \rightarrow tH$

arXiv:2302.12802

g 70000000000

Leptonic category:

- pair of photons and at least one electron or muon
- at least one b-tagged jet

Hadronic category:

- pair of photons and no lepton
- three jets, of which at least one is b-tagged

Vector-like guark (VLQ):

- Hypothetical spin-1/2, colored particles whose left- and righthanded components transform in the same way under the SM gauge group
 - Γ/M_T , : relative decay width κ_T : coupling to third generation guarks

First T' search by the LHC experiments in $H \rightarrow \gamma \gamma$

> No statistically significant excesses

T' excluded up to a mass of 960 GeV for $\kappa_T = 0.25$ and $\Gamma/M_{T_I} < 5\%$

1200 6

138 fb⁻¹ (13 TeV)

FCNC $t \rightarrow qX$ decays

Exactly one electron or muon At least four jets

Categorised by number of jets (j) and b-jets (b): 4j 3b, 5j 3b and 6j 3b

Neural Network score used for signal extraction fit

Flavour-changing neutral-current (FCNC):

- Do not exist at tree level in the SM
- Predicted in many BSM theories, e.g., Froggatt-Nielsen mechanism

X: non-SM Higgs field

No significant excess above the SM

160 12

Summary

- \checkmark Heavy resonance search remains an active area of research
- New models and particles beyond the Standard Model explored at ATLAS and CMS, yet no significant deviation beyond Standard Model is observed
- ✓ New Techniques such as Machine Learning are developed and implemented in the analyses
- \checkmark Extended exclusion limits on BSM theories

Future Prospects:

- Continued data analysis in Run-3
- □ Further development of analysis techniques
- Exploring new theoretical frameworks

Back up

Generic $Y \rightarrow XH$ in hadronic final states

10-

10-

-010⁻² 1.25 1.25 1 2.75

Bkg.

Parameter	Preselection requirements				
m_{JJ} [GeV]	> 1300				
$p_{\mathrm{T}}(J_1)$ [GeV]	> 500				
m_J [GeV]		m_{J_1}	$> 50 \parallel m$	$J_2 > 50$	
$D_{H_{bb}}$			> -2		
		S	lignal reg	ions	
	Merged		Resolved		Anomaly
m_H [GeV]	(75, 145)				
$D_{H_{bb}}$	> 2.44				
D_2^{trk}	< 1.2		> 1.2		-
$ \Delta y_{j_1,j_2} $	-		< 2.5		-
$p_{\rm T}^{bal}$	-		< 0.8		-
Anomaly Score	-		-		> 0.5
	Background estimation regions				
	CR0	HSB0	HSB1	LSB0	LSB1
m_H [GeV]	(75, 145)	(145, 200)		(65, 75)
$D_{H_{bb}}$	< 2.44	< 2.44	> 2.44	< 2.44	> 2.44

- ✓ Signal regions are built by selecting two large-R jets with additional criteria to enrich the presence of Higgs and X particles → Larger D_{Hbb} as J_H and the other as J_X
- $\checkmark\,$ Orthogonal resolved reconstruction is used to recover sensitivity where the X is less boosted
- \checkmark requiring at least four j in the event
- ✓ mY computed with large-R Higgs jet and the two small-R X jets

Vector-like quark $T' \rightarrow tH$

*Previous results on pair production exclude T' masses below 1.48 TeV at 95% confidence level (CL), assuming branching fractions of 50, 25 and 25% for bW, tZ, and tH decays, respectively

Vector-like quark $T \rightarrow Ht/Zt$

*Previously a combination of all ATLAS pair production analyses using the data collected by the ATLAS detector in 2015 and 2016 delivered the most stringent limits to date on pair-produced vector-like quarks, with masses observed to be excluded below 1.31 TeV for T and 1.03 TeV for B for any combination of decay modes

Vector-like quark $T \rightarrow Ht/Zt$

$W' \rightarrow bt$ in leptonic final states

$W' \rightarrow bt$ in leptonic final states

$W' \rightarrow bt$ in leptonic final states

 $Z' \rightarrow \mu \mu b$ search

LFV $e\mu$ or $\ell\tau$ resonance search

LFV $e\mu$ or $\ell\tau$ resonance search

31

Dark matter particles search with $W^+W^- + E_T^{miss}$

Semi-leptonic channel		Two-lepton channel		
Quantity	Selection	Quantity	Selection	
Number of leptons	1	Number of leptons	2	
Additional leptons	0	Lepton flavors	eμ, μe	
Number of jets	≥ 2	Lepton charges	Opposite	
Non W-candidate b-tagged jets	0	Additional leptons	0	
m _{ii}	$> 65 \mathrm{GeV}$, $< 105 \mathrm{GeV}$	p_{T}^{\ellmax}	> 25 GeV	
$p_{\mathrm{T}}^{\mathrm{miss}}$	$> 60 \mathrm{GeV}$	$p_{ extsf{T}}^{\hat{\ell}}$ min	> 20 GeV	
$p_{\mathrm{T}}^{\ell \mathrm{j} \mathrm{j}}$	$> 60 \mathrm{GeV}$	$m_{\ell\ell}$	> 12 GeV	
$m_{\mathrm{T}}^{\ell,p_{\mathrm{T}}^{\mathrm{miss}}}$	$> 80 \mathrm{GeV}$	$p_{\mathrm{T}}^{\ell\ell}$	> 30 GeV	
$\Delta R_{\ell ii}$	< 3	$p_{\mathrm{T}}^{\mathrm{miss}}$	$> 20 \mathrm{GeV}$	
$\Delta \phi_{\ell,\mathrm{ii}}$	< 1.8	$min(p_{\rm T}^{\rm miss, PF proj}, p_{\rm T}^{\rm miss, track proj})$	> 20 GeV	
$\Delta \phi_{\ell \mathrm{i}\mathrm{i}, p_\mathrm{T}^\mathrm{miss}}$	> 2	$m_{\mathrm{T}}^{\ell\ell,p_{\mathrm{T}}^{\mathrm{miss}}}$	> 50 GeV	
		$\Delta ar{R}_{\ell\ell}$	< 2.5	
		Number of b-tagged jets	0	

FCNC $t \rightarrow qH$ decays

*: normalised to total background

Data

tt+≥1b

tt+≥1c

☐ tt+light

non-tī

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

uX 30 GeV

---- uX 30 GeV*

/// Uncertainty

uX 30 GeV NN output

CX 30 GeV

---- cX 30 GeV*

/// Uncertainty

cX 30 GeV NN output

*: normalised to total background

Data

tt+≥1b

☐ tt+light

non-tt

²² 12000

8000

6000

4000

2000

0.

10000

8000

6000

4000

2000

0.9

0.8

Data / Pred.

0.8.

0.1

ATLAS

t→cX

5j 3b

Post-Fit

vs = 13 TeV, 139 fb

Data / Pred.

Nei

<u>~</u>

ATLAS

10000 - t→uX

5j 3b

Post-Fit

(s = 13 TeV, 139 fb⁻¹

FCNC $t \rightarrow qH$ decays

$m_{H}^{end} - m_{H}^{end}$ by po	huno huno	top	
$m_H^{ayb} > 500 \text{ GeV}$	$> 0.24 \cdot m_H^{\text{itypo}} < 0.24 \cdot m_H^{\text{itypo}}$	$ m_H^{\text{cand}} - m_H^{\text{hypo}} $	- $> 0.2 \cdot m_H^{\text{hypo}} < 0.2 \cdot m_H^{\text{hypo}}$
$\begin{array}{c} \mathbf{G} \\ $	5 = 6 $4 = 3 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 +$	Data tt Zhf Single-top tW SM Vh single-top (s+t chan) Vif Whf SMU SMU	J^{4} $TILAS Preliminary \sqrt{s} = 13 \text{ TeV}, 140 \text{ fb}^{-1} A \rightarrow 2H \rightarrow \nu \bar{\nu} b \bar{b} \geq 3 b - tag SM Vh Single-top tW SM Vh Single-top (s+t chan) Vlf VV Whf W Wf W Wf W Wf W Wf W W Wf W W W W W W W W W W$
Hlo500 Hin500 Hhi500 SS L3hi, Zout L3lo, Z	in 0L, Hlo200 0L, Hin200 0L, H	hi200 eµ 2L 1L 0.75 0L	Hlo200 0L Hin200 0L Hhi200 eu 2L 1L

Cut	Regions				
Cut	ss (CR)	L3hi_Zout (VR)	Hlo/Hhi(CR)	Hin (SR)	L3lo_Zin(VR)
N leptons	3				
$p_{\mathrm{T}}\left(\ell_{1} ight)$		> 27 GeV			
N jets			≥ 4		
N <i>b</i> -jets	$\int \rho \rho t t$ 2				
$ \eta_{H-{ m cand}}^{ m ZH-r.fr.} $	$< 2.2 + 0.0004 \cdot m_H^{\text{cand}} - 0.0011 \cdot m_A^{\text{cand}}$				
$p_{\mathrm{T}}\left(\ell_{3} ight)$	> 13 GeV > 7 GeV & < 13 GeV				
Lepton flavour	еер/µµе еее/ееµ/µµе/µµµ				
OSSF lepton pairs	0 ≥ 1				
$ m_Z^{\text{cand}} - m_Z $	< 20 GeV	> 10 GeV & < 20 GeV < 10 GeV			
$m_{H}^{\text{hypo}} < 500 \text{ GeV}$		-	$> 0.32 \cdot m_H^{\text{hypo}}$	$< 0.32 \cdot m_H^{\text{hypo}}$	-
$m_H - m_H$ $m_H^{\text{hypo}} > 500 \text{ GeV}$			$> 0.24 \cdot m_H^{\text{hypo}}$	$< 0.24 \cdot m_H^{\text{hypo}}$	

$HDM A \to ZH \to \ell\ell tt \text{ or } vvbb$	

Cut	Regions				
Cat	2L (CR)	eμ (CR)	1L (VR)	Hlo/Hhi(CR)	Hin (SR)
N jets			2-	5	
N <i>b</i> -jets	> 2				
m_{H}^{cand}	> 50 GeV				
N hadronically decaying τ -leptons	111	1hh	0		
$p_{\mathrm{T}}(V)$			> 150 GeV		
$\min_i \Delta \phi(\vec{E}_{\rm T}^{\rm miss}, \vec{p}_i^{\rm jet})$	> \pi /			/10	
$A D(h_{1}, h_{2})$			< 3.3 (2	<i>b</i> -jets)	
$\Delta \mathbf{R}(b_1, b_2)$	$< 3.5 (\geq 3 b - jets)$				
N leptons	2 1		0		
Lepton flavour	ee/µµ	eμ	e/μ	-	
$p_{\mathrm{T}}(\ell_1)$		> 27 GeV -			
$ m_Z^{\text{cand}} - m_Z $	< 10 GeV			-	
$S_{\rm MET}$	< 5	-	> 3	> 10	
m _{top}		-		> 180	GeV
$m_{\rm top}^{\rm far}$	- > 200 GeV			GeV	
$ m_H^{\text{cand}} - m_H^{\text{hypo}} $	$- \qquad > 0.2 \cdot m_H^{\text{hypo}} < 0.2 \cdot m_H^{\text{hypo}}$				

2HDM $A \rightarrow ZH \rightarrow \ell \ell tt$ or vvbb

38

2HDM $A \rightarrow ZH \rightarrow \ell \ell tt$ or vvbb

Excited $b^* \rightarrow Wt$

Previous searches for an excited bottom quark in the tW decay mode have been performed at Js = 8 TeV by the ATLAS and CMS Collaborations. These searches excluded b quark masses at 95% confidence level (CL) below 1.4, 1.4 and 1.5 TeV for the LH, RH and VL hypotheses

Generic trijet resonances search

Generic trijet resonances search

