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Why should LHCP care about ML?

simulation and modeling, lead to new discoveries, 
and foster cross-disciplinary collaboration
“ LHCP should care about machine learning 

because it can improve data analysis,

ChatGPT
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Increasing interest

ML is fun!

Future of HEP?
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LHC analysis + ML
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Analyses & Unfolding

ℒ
Theory Shower EventsHard process Hadronization Detectors

Precise Simulations1 Forward

Inverse 2

ML improved simulations

Phase-space generation

BDT [1707.00028, …], NN [1810.11509, 2009.07819, …]

NF [2001.05486, 2001.05478, 2001.10028, 2005.12719, 2112.09145, 2212.06172, …]

dσ ∼ pdf × |M(x) |2 × dΦ

Calculate (differential) cross sections

Phase space integration

⟨O⟩ = ∫ dx f(x) O(x)



I = ∫ dx f(x)

Flat sampling: 
inefficient

I = ⟨ f(x)⟩x∼unif

Importance sampling: 
find  close to g f

I = ⟨ f(x)
p(x) ⟩

x∼p(x)

Multi-channel: 
one map for each channel

I = ∑
i ⟨αi(x)

f(x)
pi(x) ⟩

x∼pi(x)

Monte Carlo integration



Importance sampling — VEGAS

Factorize probability
p(x) = p(x1)⋯p(xn)

⊕ Computationally cheap


⊖ High-dim and rich peaking functions 
→ slow convergence


⊖ Peaks not aligned with grid axes 
→ phantom peaks

Fit bins with equal probability

and varying width
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Sampling probability:
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MADNIS — Neural importance sampling

Flat sampling Importance Sampling Multi-channel

Parametrize with NFParametrize with NN

⊕ unbinned & no grids 
 no “phantom peaks”


⊕ invertible & tractable Jacobians 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f(x)
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Flow zx f(x)
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Sampling probability:
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ℒ
Theory Shower EventsHard process Hadronization Detectors

Unfolding to  
parton level

Unfolding 
detector effects

Parameter inference 
MEM

Unfolding at the LHC

Classifier based aproach 
OmniFold [1911.09107], Profiled Unfolding [2302.05390]


Density based approach 
FCGAN [1912.00477], cINN [2006.06685],  
IcINN [2212.08674], OTUS [2101.08944]

Detailed Comparison: 
Arratia et al 2022 JINST 17 P01024 [2109.13243]
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Inverting the simulation chain

Historically → Tevatron 
Top mass: D0 (98’, 04’), CDF 06’, Fiedler et al. [1003.1316] 
Single-top: Review [1710.10699]

Parameter inference 
MEM

Unfolding to  
parton level

Unfolding 
detector effects



Inference with normalizing flows
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p(xreco |α) = ∫ dxhard p(xhard |α) p(xreco |xhard)MEM master formula:



Inference with normalizing flows

ℒ
Theory Shower EventsHard process Hadronization Detectors

Theory 
parameter 

α

Known from 
theory 

Reconstructed 
momenta 

xreco

Likelihood intractable 
→ parametrize with NF 

In practice → perform integral numerically

MEM master formula: p(xreco |α) = ∫ dxhard p(xhard |α) p(xreco |xhard)



Matrix element method

ℒtt̄H = −
yt

2 [cos α t̄t +
2
3

i sin α t̄γ5t]H

pp → tH j
→ (bW) (γγ) j

tHj production:

Anomalous coupling 
with CP-angle α
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Around SM ( ):α = 0
⊖ low total cross section (few events)

⊖ low variation of rate 
⊕ kinematics sensitive ideal use case for MEM
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Take-home message

Summary and Outlook

• Fast and precise predictions with 
ML-based simulations

Future exercises

• Account for uncertainties with 
Bayesian neural networks

• Full integration of ML-based simulations into 
standard tools → MadGraph,….

ℒ
Theory Shower EventsHard process Hadronization Detectors

• Make everything run on the GPU and 
differentiable (MadJax - Heinrich et al. [2203.00057])

5@

• Normalizing flows provide statistically 
well-defined likelihoods for inference

• Foster collaboration between  
theory and experiment 

https://arxiv.org/abs/2203.00057
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Summary
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• Account for uncertainties with 
Bayesian neural networks

ℒ
Theory Shower EventsHard process Hadronization Detectors

• More details in our Snowmass report

5@
• Full integration of ML-based simulations into 

standard tools → MadGraph,….

• Make everything run on the GPU and 
differentiable (MadJax - Heinrich et al. [2203.00057])

Future exercises

• Foster collaboration between  
theory and experiment 

• Stay tuned for many other ML4HEP applications

https://arxiv.org/abs/2203.00057

