

ALICE UPGRADES

LHCP Conference – Belgrade
25 May 2023
Robert Münzer (Goethe University Frankfurt)
For the ALICE collaboration

ALICE MAIN QUESTIONS

Main focus of the ALICE program is the study of QGP properties with HI collisions

- Extended to many other aspects of QCD during Runs 1 and 2
- QGP macroscopic and microscopic properties
- Temperature and viscosity
- Interaction of partons with the QGP at various momentum scales
- Hadronization of the QGP

"Alice status and overview"

(I. Altsybeev: 22/05/23 09:30)

Two main physics items driving the ALICE upgrade strategies:

- Transport and hadronization of heavy flavors (HF) in the medium: differential measurements of HF hadron production (suppression, enhancement, flow...) down to vanishing p_T
- Electromagnetic radiation from the medium: dilepton measurements below J/ ψ mass, down to zero p_T , to map the evolution of the collision
- → Light and high-granularity detector + continuous readout to access untriggerable probes with very low S/B

ALICE - UPGRADES FOR RUN 3

Upgrade of Time Projection Chamber

New Inner Tracking system (ITS)

"Run 3 performance of new hardware with ALICE" (J. Liu 23/05/23 11:30)

Tracking and vertexing (M. Faggin 25/05/23 12:24)

Particle Identification

(C. Sonnabend: 25/05/23 12:42)

New Fast Interaction Trigger (FIT)

ALICE upgrades during the LHC Long Shutdown 2 arXiv:2302.01238

New Muon Forward Tracker (MFT)

New data acquisition and reconstruction framework (Online - Offline, O²)

Continuous data taking of min. bias Pb-Pb data at 50 kHz

ITS2

FIT

ALICE - UPGRADES FOR RUN 3

ALICE upgrades during the LHC Long Shutdown 2

https://arxiv.org/abs/2302.01238

"Run 3 performance of new hardware with ALICE" (J. Liu 23/05/23 11:30)

Tracking and vertexing (M. Faggin 25/05/23 12:24)

Particle Identification

(C. Sonnabend: 25/05/23 12:42)

ALICE 2.1: FUTURE UPGRADES

Perturbative region

FoCaL - PHYSICS MOTIVATION

Forward physics at LHC provides an opportunity to study the low-x region (< 10⁻⁵)

- Access to **non-linear QCD evolution**: investigate the onset of possible gluon saturation
- Quantify and constrain modifications of gluon (n)PDFs
- Direct photons provide a more direct access to the low-x region
 - No fragmentation
 - No final-state effects
- π^0 - π^0 / π^0 γ correlations and J/ ψ in ultraperipheral collisions

FoCaL – FORWARD CALORIMETER

Requirements:

- Energy resolution: ~ <5% (EM) ~12% (hadron)
- Position resolution: ~ 5mm (EM shower)
 - Required for two shower separation

FoCal-E:

- Optimized for γ and π^0 reconstruction
- Segmented in 18 layers of tungsten and silicon pads with low granularity (~ 1 cm)
- Two layers of tungsten and silicon pixels with high granularity (~ 30 x 30 μm²)
- Prototype tested in beam

FoCal-H:

- Cu-scintillator: direct γ isolation and jets
- Metal/scintillating calorimeter with high granularity of up to 2.5 x 2.5 cm²
- Prototype tested in beam

 $3.4 < \eta < 5.8$ FoCal-E FoCal-H

FoCal Letter of Intent: CERN-LHCC-2020-009 https://inspirehep.net/literature/1805025

FoCaL - FORWARD CALORIMETER

Requirements:

- Energy resolution: ~ <5% (EM) ~12% (hadron)
- Position resolution: ~ 5mm (EM shower)
 - Required for two shower separation

Electron separation in FoCal-E

ALI-PERF-529625

ITS3 - UPGRADE OF THE INNER TRACKER

Replacing the inner barrel of ITS2 with a next-generation vertex detector

- Pointing resolution $\approx r_0 \sqrt{x/X_0}$
- Silicon only contributes to 15% of budget for the ITS2 layers
- Pointing resolution can be improved
 - by removing material in the first layers
 - Move from water to air cooling
 - Integrate power and data on chip
 - Self-supporting structure
 - Reduce X/X_0 from $0.35\% \rightarrow 0.05\%$
 - by moving closer to beamline
 - Innermost layer from 22 mm to 18 mm radial distance from beamline

ITS3 Letter of Intent: CERN-LHCC-2019-018 http://cds.cern.ch/record/2703140

ITS3 - UPGRADE OF THE INNER TRACKER

Replacing the inner barrel of ITS2 with a next-generation vertex detector

- Pointing resolution $\approx r_0 \sqrt{x/X_0}$
- Silicon only contributes to 15% of budget for the ITS2 layers
- Pointing resolution can be improved
 - by removing material in the first layers
 - Move from water to air cooling
 - Integrate power and data on chip
 - Self-supporting structure
 - Reduce X/X_0 from $0.35\% \rightarrow 0.05\%$
 - by moving closer to beamline
 - Innermost layer from 22 mm to 18 mm radial distance from beamline

ITS3 Letter of Intent: CERN-LHCC-2019-018 http://cds.cern.ch/record/2703140

ITS3 - UPGRADE OF THE INNER TRACKER

Detector design

- Novel vertex detector:
 - Curved wafer-scale ultra-thin silicon sensors arranged in perfectly cylindrical layers
 - 280 mm long sensor MAPS (Monolithic Active Pixel Sensors) out of stitched wafers (2 halves x 3 layers)
 - Carbon foam rib to hold MAPS in place
 - Based on 65nm CMOS technology (Aglieri et al. https://arxiv.org/abs/2212.08621)

"Future Monolithic Pixel Detectors in ALICE and Beyond" (F. Carnesecchi: 25/05/23 12:06)

CERN-LHCC-2019-018

ITS3 – PHYSICS PERFORMANCE

- Physics measurements that benefit from ITS3 upgrade
 - Improved DCA resolution:
 - Charm baryons
 - Beauty-strange mesons and beauty baryons
 - Dileptons (heavy-flavor background rejection)
 - Search for exotic charmed nuclei
 - Reduced inner radius
 - Strangeness tracking (for charm-strange baryons, hypernuclei)

ALICE 3: FUTURE

2010-2013

Run1

ALICE 1

2015-2018

Run2

ALICE 3: FUTURE

Nature of interactions with QGP of highly energetic quarks and gluons

- Connection between parton transport, collective phenomena and hadronization
 - → Precision measurement of beauty quarks
- What are the mechanisms of hadron formation in QCD?
 - → Systematic measurements of (multi-)charm, exotic hadrons
- Chiral symmetry restoration
 - → Precision measurements of dileptons
- QCD chiral phase structure
 - → Fluctuations of conserved charges
- Hadron interaction potential
 - → Hadron-hadron correlations
- Searches BSM
 - → Dark photons, axion-like particles in gamma-gamma, ...

ALICE 3: FUTURE

Nature of interactions with QGP of highly energetic quarks and gluons

- Connection between parton transport, collective phenomena and hadronization
 - → Precision measurement of beauty quarks
- What are the mechanisms of hadron formation in QCD?
 - → Systematic measurements of (multi-)charm, exotic hadrons
- Chiral symmetry restoration
 - \rightarrow Precision measurements of dileptons
- QCD chiral phase structure
 - → Fluctuations of conserved charges
- Hadron interaction potential
 - → Hadron-hadron correlations
- Searches BSM
 - → dark photons, axion-like particles in gamma-gamma, ...

CERN-LHCC-2022-009 https://arxiv.org/abs/2211.02491v1

PLICE

ALICE 3 - REQUIREMENTS

Vertex detector with excellent pointing resolution \rightarrow Better then 3-4 µm @ 1 GeV/c

Compact all-silicon tracker

 $\rightarrow p_T$ resolution better than 1% @ 1 GeV/c

Particle Identification

→ Clean background suppression

Large acceptance $-4 < \eta < 4$, $p_T > 0.02 \text{ GeV/}c$

→ Statistics and correlations

Superconducting magnet system: max 2.0 T

→ Effective provision of required magnetic field

Continuous readout and online processing

→ Large data sample to access rare signals

Luminosity Targets:

- Pb-Pb: 35 nb⁻¹
- pp : 18 fb⁻¹

- → Novel detector concept based on innovative technologies relevant for future HEP experiments
- → R&D started

ALICE 3 - VERTEX DETECTOR / IRIS

Conceptual study

- 3 layers of wafer-size, ultra-thin, curved, CMOS Active Pixel Sensors → Ultimate performance
- First layer at midrapidity: 5 mm from beam axis
- Limited to LHC aperture at injection energy (16mm)
- Unprecedent spatial resolution: $\sigma_{pos} \sim 2.5 \ \mu m$
- Extremely low material budget: 0.1% per layer
- Radiation requirements: 10¹⁶ 1MeV n_{eq} /cm²
 (ITS3 prototype already achieved 10¹⁵ 1MeV n_{eq} /cm²)

Mockup

Challenges:

- Radiation hardness
- Cooling & services

ALT CE

ALICE 3 – OUTER TRACKER

- 8 + 2 x 9 tracking layers (barrel + disks)
- 60 m² silicon pixel detector based on
 CMOS Active Pixel Sensor technology
- Compact: \mathbf{r}_{out} ~80 cm, $\mathbf{z}_{out} \pm 4$ m
- Large coverage: ± 4 η
- High-spatial resolution: $\sigma_{pos} \sim 5 \mu m$ (req. < 10 μm)
- Relative p_T resolution : ~1% over large acceptance
- Time resolution: ~100 ns
- Very low material budget: ~1% X₀ per layer
- Low power consumption: ~ 20 mW/cm²

Challenges:

- Integration
- Time performance
- Material budget

ALICE 3 - PARTICLE IDENTIFICATION

CERN-LHCC-2022-009

Time of Flight detectors:

Separation power: L/σ_{TOF}

- → Distance and time resolution crucial
- \rightarrow Larger radius results in lower p_T bound
- Time resolution: ~20ps
- 2 TOF layers + endcaps
- Silicon LGADs or CMOS with gain layer
- Total silicon area : ~45m²

Complement PID reach of outer TOF to higher p_T with Cherenkov detector

- Aerogel radiator
 - n=1.03 (barrel)
 - n=1.006 (forward)
- Total SiPM area ~60m²

Challenges:

Radiation hardness of SiPM

ALICE 3 - MUON AND PHOTON IDENTIFICATION

Muon chambers at central rapidity

optimized for reconstruction of charmonia down to $p_T = 0 \text{ GeV/}c$

- ~70 cm non-magnetic steel hadron absorber
- search spot for muons $\sim 0.1 \times 0.1 (\eta \times \phi)$
- ~5 x 5 cm² cell size
- matching demonstrated with 2 layers of muon chambers
 - scintillator bars
 - wave-length shifting fibers
 - SiPM read-out
 - possibility to use RPCs as muon chambers

Large acceptance ECal (2π coverage)

critical for measuring P-wave quarkonia and thermal radiation via real photons

- sampling calorimeter (à la EMCal/DCal):
 - e.g. O(100) layers (1 mm Pb + 1.5 mm plastic scintillator)
- PbWO₄-based high energy resolution segment

Forward Conversion Tracker

Measurement of ultra-soft photons

- Thin tracking disks in $3 < \eta < 5$ in its own dipole field
- Very low p_T photons (< 10 MeV/c)

CERN-LHCC-2022-009

ALICE 3 – EXPECTED PERFORMANCE

Measurement of D meson correlations

Goal: measure angular (de)correlations – direct probe of HF interaction with the QGP

- Strongest signal at low p_T
- Very challenging measurement: need good purity, efficiency and η coverage

→ Measurement in heavy-ion collisions only feasible with ALICE 3

ALICE 3 – EXPECTED PERFORMANCE

Measurement of multi-charm baryon

- Ξ_{cc}^{++} reconstructed in the channel $\Xi_{cc}^{++} \to \Xi_{c}^{+} \pi^{+} \to \Xi^{-} \pi^{+} \pi^{+} \pi^{+}$
- Ω_{cc}^+ reconstructed in the channel $\Omega_{cc}^+ \to \Omega_c^0 \pi^+ \to \Omega^- \pi^+ \pi^+$
- Ω_{ccc} studies ongoing

- Discrimination power on the role of the various hadronisation mechanisms
- In heavy-ion collisions at the LHC, large increase of multi-HF baryons (~1000) expected via coalescence with charm quarks from different hard scatterings (N_C ~100 in central Pb-Pb)

CERN-LHCC-2022-009

ALICE 3 – EXPECTED PERFORMANCE

Precision measurement of dielectrons as function of mass and p_T

- Improved pointing resolution to reject heavy flavor
- Significant reduction of charm contribution and associated uncertainty
 - → sensitive to p-meson spectral function modification due to chiral symmetry restoration
- Possibility for multi-differential dielectron measurements
 - \rightarrow time dependence of emission

CERN-LHCC-2022-009

R. Rapp, Adv. High Energy Phys. 2013 (2013) 148253 P.M Hohler and R. Rapp, Phys. Lett. B 731 (2014) 103

SUMMARY

- ALICE came a long way in the investigation of QCD in extreme conditions
 More to come in Run 3 and Run 4 after successful upgrade (ALICE 2)
- Further improvements planned for Run 4:
 - FoCal: Forward calorimeter for measurement down to low x
 - ITS3: Replacement of inner layers of ITS with novel silicon technology to reduce material budget and improve pointing resolution
- Results obtained pose additional fundamental questions that require new heavy-ion detector at LHC
- The physics questions and proposal for next generation heavy-ion experiment (ALICE 3) have been published in letter of intent in 2022
- ALICE 3 pioneers several R&D directions that can have a broad impact on future HEP experiments (e.g. EIC, FCC-ee)
- Next steps for ALICE 3:
 - 2024: Scoping Document
 - 2027: Technical Design Reports

THANK YOU FOR YOUR ATTENTION

BACKUP SLIDES

FOCAL – FORWARDS CALORIMETER

- PDFs determined from deep inelastic scattering, neutral current of DY processes -> region of pertubative QCD
- Linear equations for evolution towards higher Q2 («DGLAP») and towards lower x («BFKL»)
- At vene lower x higher gluen desities (saturation) non-linear equations become relevent («BJK/JIMWLK»)

FoCAL PROTOTYPES

2010-2015

ORNL / Japan prototype:
NIM A 988 (2021) 164796

Indian prototypes:

- · NIM A 764 (2014) 24
- · JINST 15 (2020) 03, P03015

Current state of the TB prototypes:

2014-2018

Mini-FoCal (PADs only) in beam at P2

2014-2016

MIMOSA pixel tower (EPICAL) JINST 13 (2018) P01014

2018-2021

ALPIDE pixel tower (EPICAL-2) NIM A1045 (2023) 167539 arXiv:2209.02511

2019-2022

FoCal-E and H prototypes

- · final sensors and chips
- · close-to-final readout

FoCal-E

- 18 LG Layers (Si Pads)
 - 9x8 array
 - 1cm2 resolution
- 2 HG Layers (Si Pixels)
 - L5 and L10
 - 6 OB ITS HICs
 - ~ 30 um2 res

20 Tungsten layers (~20 X₀)

FoCal-H

- 6.5 cm x 6.5 cm x 110 cm
- · BCF12 scintillating fiber
- · 49 (central), 25 (sides) SiPMs
- 2/3 CAEN DT5202 boards

2

ALICE

FoCAL -E PIXEL @ SPS TEST BEAM IN 2022

Successful commissioning of FoCal-E PIXEL (ALPIDE)

- Double and triple electron signature identified in preliminary analysis
- Distance between electrons here ~ 10 mm, demonstration of a good two gamma separation

ITS3 - LAYERS

ITS3 – UPGRADE OF INNER TRACKER

- Beam Tests:
 - ALPIDE telescope used for the tests
 - Efficiency and resolution consistent with flat ALPIDEs
 - Spatial resolution uniform among different radii

ITS3 – UPGRADE OF INNER TRACKER

- Beam Tests:
 - ALPIDE telescope used for the tests
 - Efficiency and resolution consistent with flat ALPIDEs
 - Spatial resolution uniform among different radii
- R&D on the detector mechanics, sensor technology and readout system ongoing
 - Breadboard model 3 ready (Silicon based mock up with heaters)
 - Wind tunnel commissioned

ITS3 Breadboard model 3

ITS3 – UPGRADE OF INNER TRACKER

- Beam Tests:
 - ALPIDE telescope used for the tests
 - Efficiency and resolution consistent with flat ALPIDEs
 - Spatial resolution uniform among different radii
- R&D on the detector mechanics, sensor technology and readout system ongoing
 - Breadboard model 3 ready (Silicon based mock up with heaters)
 - Wind tunnel commissioned
- Wafer-scale sensors from Engineering Run
 - Frist MAPS for HEP using stitching
 - One order of magnitude larger than previous chips:
 - 14 x 256 mm
 - 6.72 MPixel

ITS3 - PERFORMANCE

- Study beauty-quark hadronisation mechanism
- B_s^0 production expected to be enhanced
- hadronisation of beauty quarks via recombination and enhanced strange-quark production in the QGP

ITS3 - PERFORMANCE

D_s⁺ reconstruction

$$D_s^+ \rightarrow \phi \pi^+ \rightarrow K^+ K^- \pi^+$$

- Non-prompt D_s^+ from B decays:
 - even if not direct measurement, sensitive to B_a⁰
 - larger statistical precision than exclusive B_s^0 reconstruction
- Comparison between non-prompt D_s^+ and non-strange D mesons sensitive to beauty-quark hadronisation and strangeness enhancement
- Non-prompt D_s^+ azimuthal anisotropy
 - Participation of beauty quarks in the collective motion and possible thermalisation in the QGP
 - Information about beauty-quark diffusion coefficient in the QGP
- ITS3:
 - sensitivity to discriminate azimuthal anisotropy for prompt and non-prompt D_s^+ (charm vs. beauty)

WHAT MAKES ALICE 3 UNIQUE

- ALICE 3 will have unique capabilities for the reconstruction of quarkonium states down to $p_T = 0$ and excellent performance for low energy photons (0.5 GeV and below)
 - \rightarrow high rates, wide acceptance (both in η and p_T)
- (σ_{DCA}) of ALICE 3 is about 4 μm (comp. 30-50 μm (ALICE 2) , 50-60 μm (CMS) similar kinematic range
 - $\rightarrow \Lambda_c$ and Λ_b identification
- Azimuthal DD correlations measurements that provide unique direct access to heavy quark interactions with the QGP (low material budget)
- Unique p_T reach not only for quarkonia, including P-wave states with photon detection in the calorimeter
 - Muons down to p_T ~ 1.5 GeV/c at η = 0 (ATLAS / CMS: down to pT ≈ 3–4 GeV/c)
- The photon conversion tracker that is proposed as a part of ALICE 3 provides unique access to very soft photons, to test fundamental aspects of field theory in this regime

SILICON LAYERS REQUIREMENTS

	Vertex Detector	Middle Layers	Outer Tracker
Detection efficiency (%)		>99	
Spatial resolution (µm)	2.5	-	10
Time resolution (ns)	100		
Fake hit rate (pixel ⁻¹ event ⁻¹)	<10-8		
Power consumption (mW cm ⁻²)	70 20		
Non-ioninsing energy loss (1 MeV n _{eq} / cm ²)	1×10 ¹⁶	2×10 ¹⁴	6×10 ¹²
Total ionising dose (kGy)	3000	50	2
Pixel size (µm²)	O(10×10)	O(50×50)	O(50×50)

IRRADIATION TEST

SPATIAL RESOLUTION

TRACKER EXAMPLE «MAPS»

MAPS foils – chips within printed circuit boards

- «Novel» concept (revised and update from 2012)
- Will be studied further as an option

ALICE

PIXEL SENSORS

1. Thinner LGAD sensors

- 25 and 35 µm thick prototypes
- excellent time resolution < 25 ps
- sensors of 10 µm in preparation

2. CMOS sensors with gain layer

- sensors back from foundry
- preparations of test beams

First very thin LGAD prototypes produced by FBK

25 µm and 35 µm -thick FBK single channel

Area = $1x1 \text{ mm}^2$

LG19 563

SantaCruz single-channel LGAD read-out board V1.4 SCIPP 08/18 (Gamplifier ~ 6)

+ Second stage external amplifier (G_{amplifier} ~ 11-14)

tandard sensors produced by HPK

50 μm -thick HPK single channel

(W42 & W36 with different doping concentrations)

Area = $1.3x1.3 \text{ mm}^2$

PARTICLE IDENTIFICATION WITH TOF

Separation power L/σ_{TOF}

- → Distance and time resolution crucial
- \rightarrow Larger radius results in lower p_T bound

2 barrel TOF layers ($|\eta|$ < 1.75)

- Outer TOF at r ≈ 85cm, surface: 30 m², pitch: 5 mm
- Inner TOF at r ≈ 19 cm, surface: 1.5 m², pitch: 1 mm

1 forward TOF layers (1.75 < $|\eta|$ < 4)

 Inner radius = 15 cm, outer radius = 50 cm, z ~405 cm, surface 14 m2, pitch: 1mm to 1 mm

Silicon timing sensor:

CMOS sensor with gain (baseline)

 R&D in monolithis CMOS sensors with intgrated gain layers

ConventionI LGADs (fallback)

R&D with very thin sensors

PARTICLE IDENTIFICATION WITH CERENKOV

Complement PID reach of outer TOF to higher p_T with Cherenkov detector

→ Ensure continuous coverage with the TOF

Aerogel radiator

- Refractive index n = 1.03 (barrel)
 Refractive index n = 1.006 (forward)
- R&D on monolithic silicon photo sensors

MORE ON PARTICLE IDENTIFICATION

Large acceptance Electromagentic calorimeter (2pi coverage)

- Pb-Scintillator sampling calorimeter + at $\eta \approx 0$ crystal calorimeter
- Photons + high p electrons identification
- Critical for measuring P-wave quarkonia and thermal radiation via real photons

Muon Identifier

- Absorber + 2 layers of muon detectors
- Muons down to $p_T \ge 1.5 \text{ GeV/}c$
- Scintillator bars with SiPM read-out
- Possibility to use RPs as muon chambers

Forward conversion tracker

- Thin tracking disks in $3 < \eta < 5$ in its own dipole field
- Very low p_T photons (≤ 10 MeV/c)

Search spot for muons $\sim 0.1 \times 0.1 (\eta \times \phi)$

ALICE - R&D PROCESS

Silicon pixel sensors

- Thinning and bending of silicon sensors Expand n experience with ITS3
- Exploration of new CMOS processes
 First in-beam test with 65 nm process
- Modularization and industrialization

Silicon timing sensors

- Characterization of SPADs /SiPMs
 - First test in beam
- Monolithic timing sensors
 - Implement gain layers

Photon sensors

- Monolithic SiPMs
 Integrated read-out

 Detector mechanics and according to the control of the control o
- Detector mechanics and cooling
- Mechanics for operation in beam pipe Establish compatible with LHC beam
- Minimization of material in the active volume Micro-channel cooling

MAGNET FIELD CONFIGURATION

PARTICLE IDENTIFICATION

Time of Flight detectors: Silicon timing sensors

Separation power L/σ_{TOF}

- → Distance and time resolution crucial
- \rightarrow Larger radius results in lower p_T bound
- 3 TOF layers; Total silicon area: ~45m²

Complement PID reach of outer TOF to higher p_T with Cherenkov detector

- Aerogel radiator
- Total SiPM area ~60m²

Large Acceptance EmCal (2π coverage)

- Pb-scintillator sampling calorimeter
- Crystal calorimeter at η~0

Muon Identifier

- Absorber + 2 layers of muon detectors
- Muons down to p_T ≥ 1.5 GeV/c

ALICE 3 PHYSICS PERFORMANCEBeauty Physics

B+ reconstruction

Λ_b elliptic flow, v_2

ALICE Coll. arXiv:2211.02491

PREDICTIONS FOR MULTI-CHARM BARYONS

http://arxiv.org/abs/2305.03687

- New paper: charm transport + hybrid hadronization with coalescence + fragmentation
- Broadly consistent with SHM expectation
- Large dynamics of yield enhancement: factor of 1000 for Ω⁺⁺_{ccc}
- New: model allows for prediction of transverse momentum spectra!

ALICE 3 - PERFORAMANCE

Heavy-flavor exotica: C-deuteron measurement

$$c_d \rightarrow d + K^- + \pi^+$$

- First observation of a charmed nucleus feasible
- Extremely high significance if assuming the yield of the c-deuteron to match SHM expectations

ALICE 3 PHYSICS PERFORMANCE

Precise di-lepton measurment

- Spectral function of low mass dielectrons determined with 6-8% unc. in the region $0.4 \le m_{ee} \le 1.3 \text{ GeV}/c^2$
- Chiral mixing produces a 20-25% change versus vacuum spectral functions (0.8≤ m_{ee} ≤1.2 GeV/ c^2)
- ALICE3 can observe chiral mixing effect and together with more differential measurements (dielectrons v₂) constraint the modification of a₁ spectral function

BSM SEARCHES IN ULTRA-PERIPHERAL COLLISIONS

Ultra-peripheral heavy-ion collisions (UPC): clean environment + huge $Z^4 \approx 5 \cdot 10^7$ enhanced gamma+gamma rate w.r.t. pp

Searches of BSM particle coupling predominantly to photons: modifications of the light-by-light scattering rates from virtual corrections from heavy particles (magnetic monopoles, vector-like fermions, dark sector particles)

Precision measurements of EM couplings of SM particles: anomalous magnetic moment (g-2) of the tau

Challenge for ALICE 3: acceptance for tau and light-by-light scattering down to low p_T ?

BSM SEARCHES IN UPCS

- Ultra-peripheral collisions (UPCs) are dominated by photon-photon and photonnucleus interactions. Provide for a clean environment for axion-like particles (ALP) studies
- Searches via γγ→a→γγ process. Signal would be visible as a peak in the diphoton mass distribu1on
- Performance on the estimated production cross-section given as mass and recast limit in the plane $(m_a, 1/\Lambda_a)$

ITS PERFORMANCE

