LHCb upgrades

Fabio Ferrari on behalf of the LHCb collaborationUniversity of Bologna and INFN11th Edition of the Large Hadron Collider Physics ConferenceBelgrade, 22th - 26th May 2023

kalemegdan park

Pobedni

Outline

- LHCb in Run 1 and 2: what has been achieved so far
- LHCb Upgrade I (Run 3 and 4): what we are accomplishing
 - Motivations
 - New detector technologies
 - Commissioning
- LHCb Upgrade II (Run 5 and 6): what we dream of at the HL-LHC
 - Prospects
- Conclusions

The LHCb detector

<u>2008 JINST **3** S08005</u>

- Decay-time resolution: 45 fs for $B_s^0 \rightarrow J/\psi \phi$ and $B_s^0 \rightarrow D_s^- \pi^+$
- Very good momentum resolution: Δp/ p = 0.5% at < 20 GeV/c to 1.0% at 200 GeV/c
- Excellent PID capabilities: Kaon ID ~ 95 % for ~ 5 % π→K mis-id probability
- Good ECAL resolution: 1 % + 10 %/ √(E[GeV])
- Very good muon ID: Muon ID ~ 97 % for 1-3 % π→µ mis-id probability

INFN

Motivations for LHCb Upgrade I

- New Physics still hiding somewhere, no direct observations yet
 - Flavour physics can probe energy scales well beyond the reach of current (and future) accelerators
- Physics program limited by LHCb, not by LHC
- More precision needed to push current measurements downt to SM
 precision
 Upgrade I
 Upgrade I
 - BR($B_s^0 \rightarrow \mu\mu$) down to 10% of SM
 - CKM angle γ down to 1^o
 - $2\beta_s$ to precision < 20% SM value
 - Charm CPV below 10^{-4}

LHCb Upgrade I

The LHCb detector – Run 3-4

Check G. Cavallero talk for more details on LHCb Run 3 performance

The LHCb detector – Run 3-4

Data processing and trigger

Check M. Fontana talk for more details about online reconstruction and trigger

- HLT1 reconstruction on GPUs
 - First GPU trigger in a HEP experiment!
- Real time alignment and calibration
- Offline quality reconstruction in HLT2

GB/s

EVENTS

12:10

12:00

12:20

12:30

12:40

11:20

11:30

11:40

11:50

VELO

- 52 modules for a total of 41M pixels
 Area ~ 1.2 m²
- Two movable halves → get as close as 3.5 mm to the beam to improve IP resolution
 - Separation from primary vacuum achieved with 150 μm thick RF foil
- Silicon substrate built with micro channels that will carry CO₂ for evaporative cooling
 - · Designed to cool a load of up to 30W from each module
- New ASIC VeloPix, ~20 Gbit/s in hottest ASIC and total of ~2 Tbit/s

CERN-LHCC-2013-021

Fabio Ferrari

VELO

- 52 modules
 Area ~ 1.2
- Two movab improve IP
 - Separati
- Silicon subs for evapora
 - Designed
- New ASIC
 Tbps

- On 10th January 2023 an incident happened due to a failure of the LHC vacuum system of the VELO
- RF foils have suffered plastic deformation and have to be replaced (YETS 2023/24), but no damage on detector modules and cooling
- Physics programme of 2023 is significantly affected, commissioning of Upgrade I systems can proceed as planned
- Final checks to be performed in June technical stop and running configuration decided

INFN

Upstream Tracker (UT)

- Silicon micro-strip detector
 - Four layers (aX,aU,bV,bX)
 - Increasing granularity getting closer to the beam
- Different sensors for different regions
 - 250 μm thickness
 - Pitch: ~ 95-190 μm
 - Sensors mounted on staves (both sides)
 - Maximum occupancy: < 1%
- Sensors need to be kept below -5° C
 - Bi-phase CO² cooling pipe integrated in stave
- UT installed before cavern closure in 2023
 → commissioning ongoing!

Fabio Ferrari

LHCb upgrades

Scintillating fibres tracker (SciFi)

- Brand new detector based on scintillating fibres
 - Three stations with four detection layers each, 6 fibres / layer
 - Fibres diameter and length: 250 μm / 2.4 m
 - Decay-time constant: 2.8 ns
 - Produced in total 12000 km of fibres
- Light detected by SiPMs installed at one end of the fibres
 - Temperature -40° C to reduce rate of dark counts
- New ASIC, 64 channels 130 nm CMOS
 - Clusterisation of hits implemented in FPGA after signal digitisation

0

40000

20000

-4

Fabio Ferrari

LHCb upgrades

CERN-LHCC-2014-001

RICH 1 and 2

CERN-LHCC-2013-022

INFN

15

- RICH1 with C_4F_{10} and RICH2 with CF_4
- Particle identification for momenta between 2.6 ad 100 GeV/c
- Replace Hybrid Photon Detectors (HPDs) with Multianode PMTs (MaPMTs) in RICH1 and RICH2
 - 26.2 or 52 mm² area with 64 pixels
- Change curvature of RICH1 spherical mirrors to reduce occupancy on PMTs (factor 2 less)
- New radiation hard and fast readout ASIC developed (CLARO)
- RICH 1 and 2 performance already better than in Run 1 and 2!

ECAL and **HCAL**

- Present detector kept unchanged
 - ECAL: Shashlik modules (lead + scintillator) for a total of 25 $X_{\rm 0}$
 - HCAL: TileCal modules (iron + scintillator)
- PS/SPD detectors removed
 - No need anymore for fast inputs to L0 hardware trigger
- PMT gain reduced by a factor 5 to increase lifetime of detector
 - Compensated by an equal increase in the electronic amplifier gain
- Front-End electronics redeveloped
 - Trigger-less readout
 - Cope with increased instantaneous luminosity
- Some ECAL inner modules will be replaced already in LS3 to test Upgrade II prototypes in Run 4

16

CERN-LHCC-2013-022

MUON

CERN-LHCC-2013-022

- Present MUON detector kept as it is
 - 4 layers (M2-M5) of Multi-Wire Proportional Chambers (MWPCs)
- Remove first layer (M1) with GEMs, since L0 trigger level has been removed
- Install additional shielding around beampipe to reduce particle flux in M2 inner region
- Redesign electronics to cope with 40 MHz trigger-less readout
- R&D to replace inner parts of M2 and M3 with more granular detectors (triple GEMs/MWPCs)

SMOG 2

Check G. Graziani and O. Boente talks for more details about SMOG2 and physics results CERN-LHCC-2019-005

- SMOG2 allows to inject different gases in LHCb IP
 - · Fixed target physics, in parallel with p-p data taking
 - Gas cell upstream of VELO → p-p and p-gas vertices easily distinguishable
- Increase interaction rate by orders of magnitude compared to previous SMOG
 - x20-100 collected statistics

Distribution of reconstructed vertices for pp and pAr K_s^0 reconstructed in pp and pAr collisions

18

Fabio Ferrari

LHCb upgrades

LHCb-FIGURE-2023-001

550

M [MeV/c²]

PLUME

- Cross-shaped hodoscope composed by 48 PMTs, installed upstream of the VELO
 - Detect Cherenkov light from particles impinging on a quartz tablet glued to the PMTs window
- Measure rate of coincidences every 3 seconds and compute luminosity with logZero method
 - Provide real-time feedback to the LHC to level the luminosity at IP8

INFN

Event display from 2023

Run 3 is happening and the LHCb detector is ready to face it

The LHCb detector – Run 5-6

CERN-LHCC 2021-012

Fabio Ferrari

The LHCb detector – Run 5-6

Prospects for Upgrade I and Upgrade II

*: Run 1 and 2

- Collect 50 fb⁻¹ by the end of Run 4 and 300 fb⁻¹ by the end of Run 6
 - Collected 9 fb⁻¹ during Run 1 and 2
 - Aim at keeping same performance (or better) with Upgrades
- Several flagship measurements still statistically dominated and with uncertainty on predictions negligible compared to the experimental knowledge → great potential!

	Run 1-2	Run 3-4		Run 5-6
Observable	Current LHCb	Upgr	ade I	Upgrade II
	$(up to 9 fb^{-1})$	$(23{ m fb}^{-1})$	$(50{\rm fb}^{-1})$	$(300{\rm fb}^{-1})$
CKM tests			10	
$\gamma \ (B \rightarrow DK, \ etc.)$	4° [9,10]	1.5°	1°	0.35°
$\phi_s \; \left(B^0_s ightarrow J\!/\psi \phi ight)$	32 mrad 8	$14\mathrm{mrad}$	$10\mathrm{mrad}$	$4\mathrm{mrad}$
$ V_{ub} / V_{cb} $ $(\Lambda_b^0 \to p\mu^-\overline{\nu}_\mu, etc.)$	6% 29,30	3%	2%	1%
$a^d_{\rm sl} \ (B^0 o D^- \mu^+ u_\mu)$	36×10^{-4} 34	$8 imes 10^{-4}$	$5 imes 10^{-4}$	$2 imes 10^{-4}$
$a_{ m sl}^{s} \ (B_{s}^{0} ightarrow D_{s}^{-} \mu^{+} u_{\mu})$	33×10^{-4} 35	10×10^{-4}	$7 imes 10^{-4}$	3×10^{-4}
Charm				
$\Delta A_{CP} \ (D^0 \rightarrow K^+ K^-, \pi^+ \pi^-)$	29×10^{-5} 5	$13 imes 10^{-5}$	8×10^{-5}	$3.3 imes 10^{-5}$
$A_{\Gamma} \left(D^0 ightarrow K^+ K^-, \pi^+ \pi^- ight)$	11×10^{-5} 38	5×10^{-5}	$3.2 imes 10^{-5}$	1.2×10^{-5}
$\Delta x \ (D^0 o K^0_{ m s} \pi^+ \pi^-)$	18×10^{-5} 37	$6.3 imes10^{-5}$	$4.1 imes 10^{-5}$	$1.6 imes 10^{-5}$
Rare Decays	_			
$\mathcal{B}(B^0 \to \mu^+ \mu^-)/\mathcal{B}(B^0_s \to \mu^+ \mu^-)$	-) 69% [40,41]	41%	27%	11%
$S_{\mu\mu} \ (B^0_s o \mu^+ \mu^-)$				0.2
$A_{ m T}^{(2)} \; (B^0 o K^{*0} e^+ e^-)$	0.10 52	0.060	0.043	0.016
$A_{ m T}^{ m Im} \left(B^0 ightarrow K^{*0} e^+ e^- ight)$	0.10 52	0.060	0.043	0.016
$\mathcal{A}_{\phi\gamma}^{\bar{\Delta}\Gamma}(B^0_s o \phi\gamma)$	$^{+0.41}_{-0.44}$ 51	0.124	0.083	0.033
$S_{\phi\gamma}^{\phi\gamma}(B^0_s \to \phi\gamma)$	0.32 51	0.093	0.062	0.025
$\alpha_{\gamma}(\Lambda_{b}^{0} \to \Lambda \gamma)$	$^{+0.17}_{-0.29}$ 53	0.148	0.097	0.038
Lepton Universality Tests				
$R_K (B^+ \to K^+ \ell^+ \ell^-)$	0.044 [12]	0.025	0.017	0.007
$R_{K^*} (B^0 \to K^{*0} \ell^+ \ell^-)$	0.12 61	0.034	0.022	0.009
$R(D^*)$ $(B^0 \rightarrow D^{*-}\ell^+\nu_\ell)$	0.026 62,64	0.007	0.005	0.002

CERN-LHCC 2021-012

Fabio Ferrari

Conclusions

- The LHCb experiment completed it's first decade of operations
 - Very successful operation lead to first class results
 - Physics programme expanded well beyond original expections
- The LHCb detector underwent its first major upgrade during LS2 → brand new detector
 - Removal of L0 hardware trigger
 - High-level software trigger running at 30 MHz on GPUs
 - New trackers (VELO, UT, SciFi)
 - Upgraded RICH 1 and 2 with new photodetectors and readout electronics
 - ECAL, HCAL and MUON upgraded with new readout electronics
 - New fixed target system (SMOG2) to inject various gases
 - New dedicated luminometer (PLUME)
- Commissioning phase is proceeding at full steam, even after the unfortunate VELO incident
 - Trying to squeeze out everything we can from the data we are collecting \rightarrow stay tuned!

Backup

Luminosity vs year

LHCb upgrades

CKM picture - Prospects

ϕ_s and CPV in charm mixing - Prospects

L0 hardware trigger

- LHCb Run 1-2 L0 trigger less efficient for hadrons wrt muons
 - Factor ~ 2 lower efficiency with Run 3 conditions
 - Loss of efficiency due to p_T and E_T cuts needed to keep total output bandwidth lower than 1.1 MHz (actual limit)
- At higher luminosities, loss even more important
 - Waste luminosity while not retaining amount of data
- Redesign trigger and readout to cope with 30 MHz input rate
 - Fully software trigger: flexible
 - Reconstruct higher level quantities to improve trigger efficiency and S/B

VELO – Run 1 and 2

- Silicon strips measuring the r and ϕ coordinates of the hits
- Movable device, from 50 mm (fully open) to 5.5 (mm) fully closed
 - Improve IP resolution, accetpance
 - Fully automatic system
- Total fluence: 4 x 10¹⁴ neq /cm²
- Total number of channels 170k
- Excellent performance, reliable, cluster efficiency >99.5% best hit resolution down to <4µm

INFN

LHCD

VELO – Run 3 and 4

- Pixel detector
 - Thinner sensors (300 $\mu m \rightarrow$ 200 $\mu m)$
- Move closer to beam wrt Run 1 and 2
- New RF foil
 - Reduce material budget before first hit (4.6% X₀ → 1.7% X₀)
- New ASIC (VeloPix)
 - Based on Medipix/TimePix
 - 256x256 (55 µmx 55 µm)
 - 12 per module
- Extremely high data rates

LHCD

INFN

Upstream Tracker

- Maximum occupancy below 1% in innermost regions
- Fluences up to 4×10¹⁴ neq/cm² in the inner region
- Near-detector electronics outside acceptance
 - Distributes TFC&ECS signals
 - Collects serial data from ASICs (320 Mbps)
 - Transmits optical serial data via GBTx/VTTx(~4.8 Gbps)
 - Connected to stave via pigtail flex cables
- Full read-out chain validated in system test
- CO₂ cooling tests at -30°C

A complete stave, with an exploded view of all the elements

SciFi

- Single hit reconstruction efficiency better than 99%, ~ 60 μm from test beams
- Less than 1% X₀ per layer (12x)
- 8000 photons per MeV of ionisation energy deposited, before irradiation → expect max.
 40% loss at end of operation (inner regions)
- Expected total fluence: 6×10¹¹ 1MeV neq/cm²

RICH – Run 3 and 4

- Active area of MaPMTs: $\sim 80\%$
- Average gain @ 1000V: > 1e6
- Quantum efficiency: 30% at 300 nm
- Dark count rate < 2.5 kHz/cm²
- Occupancy: ~ 1 MHz / mm² in the innermost RICH1 regions
- Shielding around RICH1 PMTs to mitigate effect of residual LHCb magnetic field (~ 2 mT)
- Hamamatsu developed special series R13742 and R1374 complying with RICH requests

PDM = 4 EC

INFN

LHCD THCD

Magnet tracking stations

- Improve acceptance for low momentum tracks that would exit LHCb acceptance
- Scintillator bars read out with SiPMs outside acceptance
- Reuse existing SciFi electronics (ASIC, read-out boards, etc)

LHCD

CINFN

TORCH

- Time Of internally Reflected CHerenkov light
 - · Large area time-of-flight detector
 - Provide PID in the momentum range 1-10 GeV/c
- Cherenkov light produced in quartz plates
 - Photons travel along the detector plane via total internal reflection
 - Focusing block focuses image on detection plane
 - Photodetectors: MCPs with 35 ps time resolution

NIM A 639 (1) (2011) 173

