The ATLAS Phase-II Upgrade Program

Martin Kocian for the ATLAS Collaboration
LHCP 2023, Belgrade
May 25, 2023
LHC Timeline

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>LS1</td>
</tr>
<tr>
<td>2012</td>
<td>EYETS</td>
</tr>
<tr>
<td>2013</td>
<td>13 TeV</td>
</tr>
<tr>
<td>2014</td>
<td>experiment beam pipes</td>
</tr>
<tr>
<td>2015</td>
<td>2 x nominal Lumi</td>
</tr>
<tr>
<td>2016</td>
<td>13 TeV</td>
</tr>
<tr>
<td>2017</td>
<td>Diode Consolidation</td>
</tr>
<tr>
<td>2018</td>
<td>LIU Installation</td>
</tr>
<tr>
<td>2019</td>
<td>pilot beam</td>
</tr>
<tr>
<td>2020</td>
<td>LS2</td>
</tr>
<tr>
<td>2021</td>
<td>ATLAS - CMS upgrade phase 1</td>
</tr>
<tr>
<td>2022</td>
<td>ALICE - LHCb upgrade</td>
</tr>
<tr>
<td>2023</td>
<td>2 x nominal Lumi</td>
</tr>
<tr>
<td>2024</td>
<td>13.6 TeV</td>
</tr>
<tr>
<td>2025</td>
<td>EYETS</td>
</tr>
<tr>
<td>2026</td>
<td>LS3</td>
</tr>
<tr>
<td>2027</td>
<td>ATLAS - CMS HL upgrade</td>
</tr>
<tr>
<td>2028</td>
<td>2 x nominal Lumi</td>
</tr>
<tr>
<td>2029</td>
<td>13.6 - 14 TeV</td>
</tr>
<tr>
<td>2041</td>
<td>5 to 7.5 x nominal Lumi</td>
</tr>
</tbody>
</table>

Major Upgrades

- High-Luminosity LHC (phase 2) to start in 2029 after LHC Long Shutdown 3 (LS3).
- Data taking until 2041, expected integrated luminosity of 3 ab⁻¹.
- Instantaneous luminosity to increase from $2 \cdot 10^{34}$ s⁻¹cm⁻² to $7.5 \cdot 10^{34}$ s⁻¹cm⁻².
- Peak leveled pile-up of up to 200 compared to 60 in the current run.

Major upgrades to the ATLAS detector are needed to cope with these requirements!
ATLAS Upgrade Overview

Upgraded Trigger and Data Acquisition System
- Single Level Trigger with 1 MHz output
- Improved 10 kHz Event Farm

Electronics Upgrades
- On-detector/off-detector electronics upgrades of LAr Calorimeter, Tile Calorimeter & Muon Detectors
- 40 MHz continuous readout with finer segmentation to trigger

High Granularity Timing Detector (HGTD)
- Precision time reconstruction (30 ps) with Low-Gain Avalanche Detectors (LGAD)
- Improved pile-up separation and bunch-by-bunch luminosity

New Muon Chambers
- Inner barrel region with new RPCs, sMDTs, and TGCs
- Improved trigger efficiency/momentum resolution, reduced fake rate

New Inner Tracking Detector (ITk)
- All silicon with at least 9 layers up to |η| = 4
- Less material, finer segmentation

Additional small upgrades
- Luminosity detectors (1% precision)
- HL-ZDC (Heavy Ion physics)

Not covered in this talk.
The Inner Tracker (ITk)

- Complete replacement of the current Inner Detector (Pixel, SCT, TRT).
- Silicon-only.
- Pixel (Inner system, outer barrel, outer endcap) and Strip detector (barrel, endcaps).
- 13 m² of silicon in Pixels, 168 m² in Strips.
- Eta coverage increase from 2.5 to 4.
- At least 9 silicon hits per track.
- Radiation tolerant up to $1 \times 10^{16} \text{n}_{\text{eq}}/\text{cm}^2$ (inner Pixels).
The ITk Pixel Detector

General features:
- Organized as three systems (inner, outer, outer endcaps).
- Five barrel-layers.
- More than 5,000,000,000 pixels.
- Inner system replaceable (radiation damage).
- Serial powering.

Sensors:
- Pixel sizes 25 x 100 μm² (innermost barrel) and 50 x 50 μm² (everywhere else).
- 3D sensors in innermost barrel/disks and planar sensors in the other layers.

Production status:
- All sensors are in pre-production.
- Hybridization of pre-production modules has started.
- ItkPixV2 readout chip has been submitted.
The ITk Strip Detector

General features:
• Four-layer barrel and two six-disk endcaps.
• Angular coverage of |\(\eta| < 2.7\).
• 18,000 modules.

Sensors/ASICs:
• Strip width \(\sim 75\,\mu\text{m}\).
• \(\sim 60\) million channels.

Production status:
• Sensors: In production.
• ASICs: In production.
• Hybrids and modules in pre-production.
Module pre-production impacted by cold noise issue. This is fixed now.
• Completely new detector between ITk and endcap calorimeter to resolve pile-up through hit-timing information.
• $2.4 < \eta < 4.0$; $R_{\text{min}} = 12 \text{ cm}$; $R_{\text{max}} = 64 \text{ cm}$.
• Pixel size of $1.3 \times 1.3 \text{ mm}^2$.
• Four layers of LGAD modules to achieve 30-50 ps resolution (70 ps per hit).
• Modules (2 ALTIROC frontends bump bonded on 2 sensors) have been demonstrated to work.
• Single-event burnout (SEB) was observed on LGAD sensors during testbeam. Mitigated by carbon-infused sensors with decreased high voltage.
• Altiroc3 readout chip was just received from TSMC.
Calorimeters

General
• New on-detector and off-detector electronics.
• Continuous readout at 40 MHz.

Liquid Argon Calorimeter (LAr)
• Total bandwidth of 345 Tbps.
• New high precision frontend electronics (4 ASICS) with a 16-bit dynamic range and a linearity better than 0.1 %.
• ATCA boards for waveform feature extraction with ~33k links at 10 Gbps.

Tile Calorimeter:
• Replacement of the most exposed PMTs (about 10%).
• Replacement of passive PMT HV-dividers by active dividers for better response stability.
• On-detector electronics at advanced stage, main board production ongoing.
• Phase-2 demonstrator has been installed in ATLAS and is taking data.
Muon Detectors

- Addition of layers of sMDT, TGC, RPC.
- MDT will provide L0 trigger information.
- Readout/trigger upgrade to send data at 40 MHz.
- Improved coverage, trigger uniformity, momentum resolution, fake rates.

Production status:
- **sMDT**: Chamber production far advanced, two thirds of the chambers already at CERN. Frontend-boards to be produced in the fall. Start of commissioning in early 2024.
- **RPC**: Second FE prototype delivery imminent. Prototype chambers extensively tested. ASIC engineering run in June.
- **TGC**: Design passed FDR, Completion of two preproduction modules imminent. FE ASIC production and QC completed.

12 m

Before upgrade

HL-LHC
Trigger:
• Trigger data input at 40 MHz.
• Level-0: Rate 1 MHz, latency 10 μs.
• Level-3 / event building: Rate 10 kHz.
• Exploits full detector granularity and extended tracking range, improves muon trigger efficiency
• For the level-3 tracking, an associative memory solution has now been excluded. Instead, use COTS hardware. Either pure software solution, or GPU or FPGA card acceleration (under evaluation).

DAQ:
• Unified backend electronics based on custom PCIe FPGA cards (FELIX) instead of VME-based readout boards.
Summary and Conclusion

To cope with the demanding conditions of HL-LHC, ATLAS will undergo a major upgrade in the next long shutdown (2026-2028).

• New detector components:
 - ITk, a new all-silicon tracker with an improved coverage up to $|\eta|<4$.
 - HGTD, an LGAD based timing detector
 - Additional sMDT, TGC, RPC muon chambers.

• Electronics upgrades:
 - LAr and Tile calorimeters and muon systems upgrading their frontend and backend electronics for the increased trigger and readout requirements.

• TDAQ upgrades:
 - Trigger system upgrade from 100 kHz to 1 MHz.
 - New readout boards for high bandwidth.

With these upgrades in place, ATLAS will be well prepared for many years of data taking at the high luminosity LHC!