BERKELEY LAB ATLAS ггггг Ш EXPERIMENT **Prompt searches for** feebly interacting particles

CERN (adapted

Elliot Reynolds for the ATLAS, CMS, LHCb, ALICE and NA62 Collaborations

LHCP 2023

Introduction

- No fundamental particles observed so far at the LHC, other than the Higgs boson
- New particles could be discovered by probing higher energies or lower cross-sections
- The LHC has been running near its maximum energy since 2015, and it is ~50 years before much higher energy collisions are expected
- Searches for weaker couplings becoming more important
- The small Higgs width means even small Higgs–BSM couplings can manifest as large branching fractions
- Colliders provide a good probe at the ~GeV scale and above
- Lower energy experiments, e.g. beam dumps, are sensitive at lower masses

More More sensitivitu

Models

- Many BSM models predict feebly interacting particles (FIPs), e.g. Higgs bosons, dark photons, axions/axion like particles (ALPs), heavy neutral leptons...
- <u>Extended Higgs sectors</u> (e.g. 2HDM+S) introduce additional Higgs bosons, and are present in various models (e.g. supersymmetry)
- FIPs can interact with the Standard Model (SM) via <u>portal particles</u>, which often kinematically mix with a SM boson
 - Dark sectors containing dark matter (DM) <u>can couple weakly</u> to the SM through portals
- <u>Majorana neutrinos</u> from "see-saw" models can explain the small neutrino masses
- <u>Axions</u>/ALPs can solve the strong CP problem, and provide a DM candidate
- Models with FIPs can also potentially explain the g 2 anomaly

$Z \rightarrow A'h_d, h_d \rightarrow A'A'^{(*)}$

ATLAS-CONF-2023-016

- Target signal: dark photon A'
- Signature: two $A' \rightarrow \ell^+ \ell^-$ decays
- **Triggers:** single- ℓ & multi- ℓ
- Selection overview: $\geq 2 \text{ SF OS}$ lepton pairs; $m_{4\ell} < m_Z - 5 \text{ GeV}$; $m_{\ell_3 \ell_4}/m_{\ell_1 \ell_2} > 0.85$
- Main backgrounds (models):
 - $qq \rightarrow 4\ell$ (MC & CR)
 - fake leptons (fake-factor method)
- **Categorisation:** SR & $qq \rightarrow 4\ell$ CR
- **Discriminant:** mean di- ℓ mass
- Dominant uncertainties: data stats

5

$Z \rightarrow A'h_d, h_d \rightarrow A'A'^{(*)}$

- Covers significantly wider A^{\prime} and h_d mass ranges than previous searches, e.g. PRL 108 (2012) 211801 and PRL 114 (2015) 211801

ATLAS-CONF-2023-016

 $\rightarrow 2t2b, 3t1b$

ATLAS-CONF-2023-021

- Target signal: dark pions π_D
- Signature: 8–10 jets with \geq 4 b-jets
- Triggers: $H_{\mathsf{T}} = \Sigma |p_{\mathsf{T}}^{\mathsf{jet}}|$

- Selection overview: ≥ 2 large-radius jets with masses > 250 GeV & > 300 GeV for π_D , 2 b-jets with $\Delta R < 1$, & $m_{bb}/p_{T,bb} > 0.25$
- Main background (model):
 - multiple QCD jets (4D ABCD estimate)
- **Categorisation:** 9 SRs based on m_{iet} values

 $\pi_D^{\pm}\pi_D^{\cup,\pm} \rightarrow 2t2b, 3t1b$

- **Discriminant:** event yields in 2D m_{iet} regions
- **Dominant uncertainties:** multi-jet background estimation and data stats
- First dedicated π_D search!

ATLAS-CONF-2023-021

VBS Heavy Majorana Neutrinos

- Target signal: Majorana neutrino N exchange, with Weinberg Operator and Phenomenological Type I "see-saw" interpretations
- **Signature:** vector boson scattering (VBS), giving $\mu^{\pm}\mu^{\pm}$ + VBS jets
- **Triggers:** single- μ
- Selection overview: same-sign di- μ & \geq 2 jets; m_{jj} > 300 GeV & $\Delta \eta_{jj}$ > 4; b-jet & $E_{\rm T}^{\rm miss}$ vetos
- Main backgrounds (models):
 - *WWjj* (MC with CR)
 - WZ (MC with CR)
- **Categorisation:** SR, *ssWW* CR & *ZZ* CR

EXOT-2020-06

VBS Heavy Majorana Neutrinos

- Discriminant: sub-leading jet p_T
- Dominant uncertainties: data stats
- $|m_{\mu\mu}| < 16.7 \text{ GeV} (13.1 \text{ GeV exp})$
- This analysis provides world leading sensitivity to TeV-scale m_N , and complimentary sensitivity neutrinoless double beta decay

EXOT-2020-06

10

Exotic Higgs Decays Summary

ATL-PHYS-PUB-2021-008

2HDM+a DM Comb/Summary

- 2HDM+a is an important DM model, with 14 free parameters
- 3 analyses are combined, and 7 more included in the summary
- Several benchmark scenarios are considered, e.g.:

Higgs to invisible combination

• The portal between the dark sector and the SM can be the Higgs boson, which can make decays of the Higgs to DM possible

arXiv:2301.10731 [hep-ex]

Higgs to invisible combination

- 95% CL upper limit: $\mathscr{B} < 10.7\%$ (7.7%)
 - Most stringent upper limit to date!

arXiv:2301.10731 [hep-ex]

$Z' \to s \chi \chi, s \to W^+ W^-$

CMS-PAS-EXO-21-012

- Target signal: DM produced via dark Z and dark Higgs
- Signature: W^+W^- + MET, with at least one leptonic W decay
- Channels: di-leptonic & semi-leptonic
- **Triggers:** single- ℓ & di- ℓ
- Selection overview: MET requirements & b-vetos
 - **Di-leptonic channel:** 2 opposite-flavour OS leptons
 - Semi-leptonic channel: 1 ℓ & \geq 2 jets
- **Categorisation:** di-leptonic channel has 3 $\Delta R_{\ell\ell}$ categories
- Main backgrounds (models):
 - **Di-leptonic channel:** tW, $t\overline{t}$, & WW (MC+CRs)
 - Semi-leptonic channel: W + jets, $tW \& t\overline{t}$ (MC+CRs)

 $Z' \rightarrow s \chi \chi, s \rightarrow V$

• **Discriminants:** transverse mass of subleading lepton and MET, and $m_{\ell\ell}$ in di-leptonic channel, and BDT in semi-leptonic channel

$X \to \mu \mu$

- Target signal: generic $X \to \mu^+ \mu^-$, m_X : [1.1, 2.6] or [4.2, 7.9] GeV
 - Model independent, 2HDM+S and Z_D interpretations
- **Triggers:** di- μ scouting triggers write subset of event to disk
 - Event rates up to 2 kHz (\sim 4 \times standard di- μ triggers)
- Selection overview: ≥ 2 BDT-based high-level trigger muons with $p_{\rm T} > 4$ GeV & $|\eta| < 1.9$
 - Additional high- $p_{\rm T}$ selection with μ & di- μ $p_{\rm T}$ requirements
- Signal model: DSCB+Gaussian
- Background model: smooth functions

CMS-PAS-EXO-21-005

 $X \to \mu \mu$

• **Discriminant:** di- μ mass

CMS-PAS-EXO-21-005

 $Z' \to N_{\ell} N_{\ell} \to \ell^{\pm} \ell^{\pm}$

- **Target signal:** $Z' \rightarrow N_{\ell}N_{\ell}$ decays from a "see-saw" mechanism in a left-right symmetry model
- Signature: 2 SS ℓ & 4 jets
 - A focus on $m_{N_\ell} \ll m_{Z'}$
- **Channels:** di-e & di- μ
- **Triggers:** di- e/γ & single- μ

- Selection overview: 2 same flavour "loose" $\ell \& \ge 2$ jets; $m_{\ell\ell} > 150 \text{ GeV}; N_{\ell}$ mass difference minimised in matching
- Categorisation (per channel): 0 AK8 jets, $2 \ell \& \ge 4$ AK4 jets SR; 1 AK8 jet, $\ge 1 \ell \& \ge 2$ AK4 jets SR; ≥ 2 AK8 jets SR; $t\bar{t}$ CR; & Z CR
- Main backgrounds (models): $t\overline{t}$ & Drell-Yan/Z (both MC with datadriven corrections and CRs)

 $Z' \to N_{\ell} N_{\ell} \to \ell^{\pm} \ell^{\pm} 4q$

- **Discriminant:** $m_{Z'}$
- Most stringent direct limits on $m_{Z'}-m_{N_{\ell'}}$ plane to date

CMS-PAS-EXO-20-006

Exotica Results Summary

Summary

- The LHC pushes the energy frontier, but can also probe lower crosssections via FIP searches
- Various recent FIP searches were presented, but many less-recent searches exist
- ATLAS also performed a semi-visible jets search (see <u>Sukanya's talk</u>), and a variety of exotic Higgs decays searches (see <u>Rocky's talk</u>)
- Many searches stats limited \rightarrow Run 3 & HL-LHC should be exciting!
- New LHCb results on the way!
- ALICE 3 will have sensitivity to ALPs
- NA62 has various less-recent FIP results:
 - Phys. Lett. B 807 (2020) 135599
 - JHEP 3 (2021) 58
 - Phys. Lett. B 816 (2021) 136259
 - JHEP 2 (2021) 201

CERN (adapted)

Thanks for listening!

Any questions?