

Richard Hawkings (CERN)

11th LHCP conference, Belgrade, Serbia, 26/5/2023

- An intense week of LHC physics
 - 42 plenary talks, 12 parallel tracks with multiple individual and joint sessions
 - Cannot summarise this in 30 minutes
- A personal selection of highlights ...
 - Trying to focus on most recent results
 - Apologies if your favourite topics are not included [©]

[GeV]

- 13 years since start of LHC data-taking
 - 11th LHCP conference, first in-person since 2019
- Achievements of the LHC/experiments to date
 - Exploration of a new energy regime
 - The Standard Model reigns supreme
 - Discovery of a / the(?) Higgs boson
 - A new precision measurement programme
 - Consistency of the CKM paradigm in flavour physics
 - Exploration of QCD in new environments
 - Pb+Pb, p+Pb, zoos of new hadrons
 - Many, many searches for new physics
 - A lot of models/parameter space ruled out
 - But new ideas / opportunities keep appearing
 - 3σ effects come and go (and come and go)
- Most results still coming from Run-2 data
- 4.5 years after end of data-taking, a treasure trove that continues to be exploited 26th May 2023
 Richard Hawkings

Rhodri Jones

Where are we going?

- 4-year Run-3 started on 5th July 2022
 - Significant upgrades towards HL-LHC for both machine and detectors (esp. triggers)
 - Expect ~250 fb⁻¹ for ATLAS/CMS, 25-30 fb⁻¹ for LHCb and 7 nb⁻¹ PbPb for ALICE
 - More than doubling the Run-2 dataset
 - Injector/LHC improvements (e.g. lumi-levelling)
 - New detector capabilities bring new possibilities
 - Starting to see first results from Run3 data ③
- HL-LHC upgrade is coming (Run-4 ++)
 - Operation from 2029-2041, ~3 ab⁻¹
 - Major upgrades of ATLAS+CMS for Run-4
 - LHCb and ALICE scoping their phase2b upgrades for Run-5 (2035 onwards)
 - Challenges everywhere data analysis, operations and construction of new detectors
 - All at the same time !

26th May 2023

Richard Hawkings

LHC control room 5/7/22

Electroweak precision and the W mass

F. Balli

- Spectacular consistency of EW fit indirect vs. direct measurements
 - LHC contributions to m_t , m_W , m_H , α_S , ...
 - But latest CDF m_W strongly disagrees with other measurements and with SM
 - No convincing explanation so far
- Meanwhile, updated results from ATLAS
 - Reanalysis of 7 TeV data, updated PDFs
 m_w=80.360±16 MeV
- New direct measurement of $p_T(W)$ with low pileup samples at $\sqrt{s}=5$ and 13 TeV
 - Reconstruction of p_T(W) via hadronic recoil
 - Validation comparing recoil and $p_T(II)$ in $Z \rightarrow II$
 - Pythia AZ MC (tuned to Z at 7 TeV) gives good description of p_T(W) at 5 TeV at low p_T(W)
 - Validates modelling used in m_w measurement
 - Eagerly awaiting a CMS result ... 26th May 2023 Richard Hawkings

26th May 2023

m_{ii} [GeV]

Vector boson scattering at high energy

Richard Hawkings

60 H

40 ⊢

)0 3000 m_{H^{±±}} [GeV]

m_⊤ [GeV]

J. Raine, M. Quinnan

Rare processes with heavy objects – 4 tops

- 4 top quark production observed by ATLAS+CMS
 - Highest-threshold SM process, sensitive to top-Yukawa coupling and potential BSM (2HDM, SUSY...)

- 2nd generation full Run-2 analysis from both expts.
 - Focused on 2 same-sign leptons or 3+ leptons and large jet and b-jet multiplicity
 - Optimised selections, greater use of machine learning

	Obs	Ехр	σ (fb)
ATLAS	6.1	4.3	22.5 ^{+6.6} -5.5
CMS	5.6	4.9	17.9 ^{+4.4} -4.0

Slight upward fluctuation on SM σ =12.0±2.4 fb ..?

26th May 2023

Richard Hawkings

Top quark physics – testing Lorentz invariance

 $d_{XZ} = d_{ZX}$ $d_{YZ} = d_{ZY}$

-0.02 -0.015 -0.01 -0.005

- SMExtension adds Lorentz-violating operators
 - Lorentz violation at high scale in quantum gravity
 - Relatively unconstrained for quarks, ~10% top (D0)
- CMS measurement of top-pair cross-section as function of sidereal time, frame referenced to Sun
 - 24 sidereal hours ≈ 23h56m
 - Careful consideration of time-dependent systematics
- No evidence of variations seen at ~2% level

0

T. Stevenson, N.Chanon

0.005 0.01 70.015 0.03 Wilson coefficient value

Y. Hou, L Hao

CKM measurements – $sin2\beta$

- New precision measurement of CKM angle β using full Run2 LHCb dataset
 - $\sin 2\beta$ from time-dependent asymmetry of B⁰/B⁰bar \rightarrow J/ ψ K_s (\rightarrow µµ/ee $\pi^{+}\pi^{-}$)

$$\mathcal{A}^{CP}(t) = \frac{\Gamma(\overline{B}^0(t) \to f) - \Gamma(B^0(t) \to f)}{\Gamma(\overline{B}^0(t) \to f) + \Gamma(B^0(t) \to f)} = \frac{S\sin(\Delta m_d t) - C\cos(\Delta m_d t)}{\cosh\left(\frac{1}{2}\Delta\Gamma_d t\right) + \mathcal{A}_{\Delta\Gamma}\sinh\left(\frac{1}{2}\Delta\Gamma_d t\right)}$$

- Flavour of B⁰ at production tagged from both opposite- and same-sign info
 - Crucial to have high efficiency/small mistag (statistical dilution), precise calibration

Lepton flavour violation (or not) in B decays

R(D*)

- Tree-level b \rightarrow clv with l= τ / μ :
 - R(D) and R(D*) with hadronic/leptonic τ
 - Very challenging at hadron colliders due to missing v, hadronic b/g, precise MC needed
- Recent LHCb analyses compatible with SM
 - World average now 'only' 3σ away in 2D plot
 - Awaiting full Run2 LHCb and Belle2 updates
- $R(K/K^*)$: Loop-level b \rightarrow sll with ll=µµ / ee:
 - e and µ acceptance very different in LHCb, unique backgrounds only for electrons
 - Exploit normalisation via J/ψ

$$R_X = \frac{\mathcal{B}(B \to X\mu^+\mu^-)}{\mathcal{B}(B \to Xe^+e^-)} \times \frac{\mathcal{B}(B \to XJ/\psi(\to e^+e^-))}{\mathcal{B}(B \to XJ/\psi(\to \mu^+\mu^-))}, X = K^+, K^{*0}$$

- Cancellation of systematics, check $r(J\psi)=1$
- Results now in agreement with unity ©
- Other decay modes exploited, P₅' persists...

26th May 2023

F. Reiss, R. Mohammed

Richard Hawkings

R. Jones, K. Ulmer

Lepton flavour violation in τ decays

- τ from heavy flavour decays low p_T, forward
 - Fit 3 low-p_T muons to common vertex
 - BDTs for fake muon rejection and event level S/B
 - Signal normalised to D_s→φ(→μ⁺μ⁻)π⁺ to minimise dependence on HF cross-sections and muon efi.
- τ from W decays, higher p_T
 - Muons with pT>7, 1 1 GeV fit to common vertex
 - pT(3µ)>15 GeV, BDT to reduce background
- In both cases, categorise based on 3µ mass reslⁿ
- Sensitivity limited by L1 trigger for low-p_T muons
- Results combined with previous 2016 results
 - Limit Br(τ→3µ)<2.9 10⁻⁸ at 90% CL
 - Approaching 2.1 10⁻⁸ limit set by Belle
 - New triggers for Run-3

m(3µ) [GeV]

H. Saka, M. Kwok

New technique in leptoquark searches

• Search for LQ coupling to τ +quark (uds, b)

- Final state: $\tau(\rightarrow \tau_{had}, e, \mu)$, (b) jet and p_T^{miss}
 - Unlike traditional single LQ, 2nd lepton is soft
 - Require p_T^{miss} to align with lepton direction
 - Main background from W+jets, exploit BDT
 - Use collinear mass m_{coll} as final discriminant
- Set direct limits on τ -light quark coupling $\Lambda_{q\tau}$
 - Competitive limits also set on A_{qb} at high m_{LQ}
 - Technique applicable to other lepton flavours
 Richard Hawkings

A. Bermudez Martinez

Heavy flavour production in pp collisions

- Study of charm hadron production at low and high multiplicity in 13 TeV pp
 - Do fragmentation functions measured in e⁺e⁻ or ep also apply in pp?
 - Measurement of D_s/D⁰ ratio
 - Constant with p_T, multiplicity
 - Compatible with e⁺e⁻ and ep
 - Measurement of Λ_c/D^0 ratio
 - Strong decrease with p_T, and significant increase at high multiplicity
 - Breakdown of fragmentation universality
- $\Lambda_{\rm c}/{\rm D}^0$ not reproduced by PY Monash $\stackrel{\sim}{\prec}$ 0.8
 - But incorporating 'beyond leading colour' can reproduce trends in data
 - As can statistical hadronisation models
 - Also seen in K_s/A ratios
- Similar results from CMS (F. Catalano)

L. Cunqueiro PbPb collisions - new directions in jet quenching

Hadron spectroscopy - more exotic states?

R. Jones

P. Larionov

Anti-nuclei cross-section measurement

- ALICE used them to measure σ_{inel} (anti-³He-p)
- Anti-³He produced in central PbPb collisions
 - Study N^{TOF}/N^{TPC} ratio and compare to MC

- Convert to σ_{inel} for p rather than ALICE material
 - Alternative method based on anti-³He/³He ratio, but requires assumption on σ_{inel} (³He-ALICE)
- Input on transparency of galaxy to anti-³He
 - Potential signature of dark matter annihilation

Evidence for a new Higgs decay

C. Arcangeletti

- Rare $H \rightarrow Z\gamma$ decay studied by ATLAS+CMS
 - BR in SM is ~1.5 10⁻³, \times 3% per Z \rightarrow II flavour
 - C.f H→γγ discovery channel BR≈2 10⁻³
 - BSM scenarios could lead to different BR
 - Analyses use a Z→ee/µµ with m_{ll}>50 GeV + isolated photon, b/g from DY+γ, DY+jets
- Existing analyses have now been combined at the likelihood level

	Obs σ	Exp σ	Sig. strength µ
ATLAS	2.2	1.2	2.0 ^{+1.0} -0.9
CMS	2.6	1.1	2.4 ^{+1.0} -0.9
Combined	3.4	1.6	2.2 ± 0.7

- Combined BR is $(3.4 \pm 1.1) 10^{-3}$, 1.8σ higher but compatible with SM prediction
- Uncertainty is dominated by data statistics
- Low-hanging fruit for Run-3 observation?
 26th May 2023 Richard Hawkings

R. Di Nardo, C. Arcangeletti Higgs at LHC Run-3

- ATLAS+CMS measured ttbar at 13.6 TeV
- Now ATLAS 'rediscovers' SM Higgs at Run-3
 - Requires understanding of $e/\mu/\gamma$ ID & scale
 - Simplified analyses without categorisation
 - Extrapolation of fiducial to total cross-section
 - Preliminary understanding of systematics

- Results not yet competitive with Run-1/2
 - But ... an essential step, fixing problems, training a new generation of analysers

Richard Hawkings

Searching for additional pseudo-scalars

- Light pseudoscalar $a \rightarrow \mu \mu$ is well-motivated
 - Galactic gamma-ray emissions, Coy dark matter
 - Enables strong first-order EW phase transition
 - Large top coupling, or via $t \rightarrow H^+b$, $H^+ \rightarrow Wa$

- Select eμμ or μμμ events with 12<m_{μμ}<77 GeV
 - Require ≥3 jets and ≥1 b-tag from top decay(s)
 - Backgrounds from tt+X or non-prompt leptons
- Limits set on $\sigma(pp \rightarrow tta) \times Br(a \rightarrow \mu\mu)$
 - 0.5-3 fb, local 2.4 σ excess at 27 GeV, eµµ/µµµ
 - Also set limits on H⁺→Wa scenario
 - For 120<m_{H+}<160 GeV
 - Statistically limited search ⇒ Run3 data 26th May 2023 Richard Hawkings

N. Kyriacou, M. Chertok

Electroweak SUSY

- Final states with τ are challenging but interesting
 - Co-annihilation of neutralinos, dark matter, ...
- 2^{nd} gen. ATLAS di- τ analysis with full dataset

- Improved τ -ID based on recurrent neural network
- BDT based on kinematic variables (e.g. stransverse mass) to select signal candidates
 - Backgrounds from mutijets constrained from data, top and W/Z+jets from dedicated control regions

Limits improve significantly on 1st gen analysis

- Mass-degenerate $s\tau_{L,R}$ up to 480 GeV
- Right-handed $s\tau_R$ up to 330 GeV (1st at LHC)
- Also limits for χ^0 / χ^1 decaying to $s\tau$ or via Wh

Richard Hawkings

SUSY with disappearing tracks

- Compressed scenario, Δm(χ⁺₁, χ⁰₁)~100 MeV
 - Long-lived χ^+_1 decaying in tracker to $\pi^+ \chi^0_1$
 - Disappearing track(s) + p_T^{miss}
- Target a variety of scenarios: gluino, stop/sbottom

- Analysis uses pixel-only, pixel+strips tracks
 - With BDTs and use of pixel dE/dx
 - 49 search regions using p_T^{miss}, N_{jet}, leptons
 - O(10) candidates selected/region, data-driven estimation of fake-track background
- Limits set in a variety of models
 - Up to 1.1-1.5 TeV for $\chi_{1}^{+}, \chi_{1}^{0}, c\tau = 200$ cm
 - 500 GeV improvement c.f. prompt searches

26th May 2023

Richard Hawkings

S. Sekmen, L. Shchutska

Dark matter and long-lived particles

- CMS search for 'inelastic' dark matter
 - Two DM states χ_1 and χ_2 with small Δm splitting
 - No elastic scattering with nuclear matter
 - Dark photon A' coupling to SM hypercharge
 - Can account for thermal relic abundance whilst evading other constraints
- ISR jet, E_T^{miss} (trigger) plus displaced μ⁺μ⁻

- Sensitive to χ_2 decay lengths from 1cm to few m
 - Dedicated muon reco. using muon system hits only, matched to standard muons where possible
- Limits set in ($m_1, \sigma \times BR$) plane
 - Shown here for $\Delta m=0.1m_1$, $m_{A'}=3m_1$

26th May 2023

Richard Hawkings

A. Li

T. Bockh, S. Ilieva

First collider neutrinos

- SND@LHC: emulsion detector, veto, interleaved calorimeter and muon tracking
- Both experiments see neutrinos undergoing $CC \rightarrow \mu$ interactions in target

- Emulsion analysis to come
 - FASER has also set a dark photon limit ~ 10-100 MeV
 - See N. Tarannum
- Start of a new physics program at LHC

M Kocian, J Alimena, F Ferrari, R Munzer

CERN

Detector upgrades for HL-LHC phase

- Upgrades for Run-3 now being commissioned
 - Trigger/rate capability, pre-Run4 upgrades
 - Challenging to commission/exploit for physics
- ATLAS+CMS phase 2 upgrades for Run4
 - New tracking detectors, timing layers, muons
 - CMS HGCal endcap 'digital' calorimeter
 - New state-of the art TDAQ/trigger systems
- LHCb and ALICE intermediate upgrades
 - E.g. RICH electronics; ITS3/FoCal
- Phase2b upgrades for Run5-6
 - LHCb sub-ps precision timing everywhere, SciFi tracker, SiPM-based RICH
 - ALICE3 with superconducting solenoid and allsilicon tracker
- Effort/cost like building new experiments ...
 - Ambitious programme for next decade(s)

26th May 2023

Richard Hawkings

Vertex detector

G. Pietrzyk, O. Sunneborn

LHCPeople

- LHC physics done by a community
 - Should be inclusive and representative of society as a whole (gender, regions)
 - All collaborations now monitor this
 - Fraction of women ~20%, slowly increasing
 - But skewed towards young people
 - Lots of efforts to support early career scientists
 - majority of the collaborations!
 - Skills, mentoring, well-being, job-hunting
 - How can senior people support this better?
- Outreach activities
 - Sustaining/increasing interest in LHC physics, and science in general
 - Attracting talented young people to the field
 - Onsite and virtual visits to LHC experiments
 - First-data events, masterclasses, open data for educational use

26th May 2023

- Impressive and rich array of results shown at this 11th LHCP conference
 - LHC physics is thriving ...
 - Could only scratch the surface of all the activities that have been shown
- The Standard Model still reigns supreme
 - The Higgs is there, and behaves like the SM Higgs
 - Rare processes showing up as they should
 - No compelling evidence for new physics
 - Hints of lepton flavour violation are becoming less significant
 - Impressive ingenuity in finding new ways to exploit the LHC data
- An exciting and intense few years ahead
 - Gathering and analysing the Run-3 data sample 'the physics of this decade'
 - Building the HL-LHC upgrades, exploiting the Run-3 'pre-upgrades'
 - Renewing the collaborations retaining 'old' collaborators and attracting new ones
- Don't relax, and stay engaged ...