

ATLAS Liquid Argon Calorimeter Frontend electronics Phase 2 upgrade

Elena Mazzeo (Università degli Studi & INFN Milano) **On behalf of the ATLAS Liquid Argon Calorimeter Group**

1. Introduction

ATLAS Liquid Argon (LAr) Calorimeter

- Sampling calorimeter based on **liquid argon** as **active medium**.
- Measures energy, position and timing of electromagnetic showers (electrons and photons) + jets [1].

EM calorimeter	Hadronic Endcap	Forward Calorimeter
(barrel + endcap)	(HEC)	(FCal)
 Lead + LAr 173,312 read-ou channels Coverage: η < 	- Copper + LAr t - 5632 read-out channel - Coverage: 3.2 1.5 < η < 3.2	 Copper/Tungsten + LAr 3524 read-out channels Coverage: 3.1 < ŋ < 4.9

2. LAr Phase 2 upgrade

- To accomodate the data volume of HL-LHC, the **on-detector** and off-detector electronics need to be redesigned and replaced [2].
- Will be installed during Long Shutdown (LS) 3.

182,468 cells!

Read-out electronics samples at **40 MHz** and sends off the detector for analysis and triggering!

The High Luminosity LHC (HL-LHC) phase

- Instantaneous luminosity up to 7×10^{34} cm⁻²s⁻¹ = 7 × design luminosity.
- **Challenging operation** environment!
 - ATLAS **TDAO** system needs to handle **simultaneous pp interactions** ($\langle \mu \rangle$) up to ~200.
 - Stronger radiation tolerance for on-detector electronics.

3. On detector electronics

Front-end board (FEB2) (1)

- Receives signal from calorimeter cells and performs **analog** processing.
- Signals are **digitized**, **serialized** and **transmitted** off-detector via lpGBT protocol.

PA/S Ch3

FEB2 testing (Slice Test Board)

• Slice board with **32 channels** (1 / 4 of FEB2) with same density as final FEB2.

• Used for **characterizing** energy and timing,

Calibration board (2)

- Injects **known** calorimeter **signals** to **calibrate** read-out electronics.
 - Must cover **full dynamic range** (320 mA, up to 7.5 V output): requires HV-CMOS technology.
- 122 boards with 128 channels needed to

• 1524 FEB2s with 128 channels each.

ALFE2 custom ASIC: Pre-Amplifier/Shaper (PA/S)

- Provides amplification and CR-(RC)² shaping over two overlapping gain scales (High and Low), based on 130 nm CMOS technology, and will have 4-channel summing for hardware trigger.
- Non-linearity < 0.1% and noise < 350 nA for 10 mA channels. • Radiation tolerance: performant after 12 kGy doses.
- Exceeding specifications!

COLUTAv4 custom ASIC: Analog to Digital Converter (ADC)

Digitizes PA/S outputs at **40 MHz** with **16-bit dynamic range** and > 11bit precision, covering 8 channels (4 LAr channels × 2 gains), based on 65 nm CMOS technology.

• Excellent uniformity performance with injection of 2MHz sine wave. • Low pedestal noise: RMS of 12 ADC counts.

Power distribution

Key results

- Tested various solutions for **on-board stepping down 48-V** power supply to the **voltages** needed by the **ASICs** with the help of **mezzanines**.
- Noise level under control using radiation-soft solutions.

Outlook

- Tests with **CERN-developed radiation-hard** solutions using bPOL48V + bPOL12V.
- Perform deeper testing with **full-sized FEB2 prototype** (now in production, expected in Summer 2023).

performance.

12-V, no mezzanine (average = 5.1) 48-V, SM with bPOL-48V, BRIC (average = 8.0) 48-V, SM with LMG5200, BRIC (average = 6.3) 48-V, LM, BRIC (average = 4.3) 5.0 0.0

CLAROCv4 custom ASIC

Creates pulse by opening high frequency (HF) switch (based on 180 nm XFAB technology).

LADOCv2 custom ASIC

16-bit Digital to Analog Converter, commands HF switch (based on 130 nm TSMC technology).

Both ASICs meet **linearity requirements** (non-linearity < 0.1% up to 300 GeV). Radiation testing of ASICs ongoing.

Refine layout in LADOCv2b and CLAROCv4b. Install the chips on prototype calibration boards for testing.

4. Off detector electronics

LAr Timing System (LATS) (3)

Handles Trigger, Timing and Control (TTC) distribution, configuration, and monitoring of the FEB2 and Calibration boards, relying on IpGBT protocol.

Key

LATOURNETT ATCA board

5. Summary

- On-detector and off-detector electronics for the LAr calorimeter are being re-designed, to cope with the **challenges** of **data taking** conditions at HL-LHC.
- All electronics will be **replaced** by **2029**, and are designed to **run** throughout

linearity, and multi-channel

Key

Equipped with 1 central + 12 array AREA Cyclone 10 FPGAs, each communicating with 12 on detector boards via optical links.

- Completed test board design and prepared test bench.
- Proposed architecture for integration with ATLAS TTC and TDAQ results systems.
- Test prototype and system integration. Outlook

Applies digital filtering to waveform from the FEB2, calculates energy and time, and transmits to TDAQ systems. I Considering ML architectures to implement in FPGA for energy reconstruction. LASP ATCA board (main blade) + sRTM

Key

- Receives data from 8 FEB2s (=1024 channels).
- Computes energy and time at up to **1.8 Tb/s**.
- Sends output to DAQ at 25 Gb/s upon receiving a trigger accept signal.

LAr Signal Processor (LASP) (4

• Implemented using two **Stratix 10 FPGAs** (migration to Intel Agilex ongoing)

- Validated power, I²C sensors, and FPGA configuration.
- **Optimize** FPGA **resource usage** and **power** consumption. Outlook Test **integration** with **FEB2**.

the full HL-LHC operation (~ 2041).

- Major **progress** on **LAr Phase 2 upgrade**:
- - Custom ASICs meet / exceed **specifications** for analog performance!
 - Promising test results on FEB2 preprototype (Slice Test Board), and full-size FEB2 prototype in preparation.
 - LASP test boards running and firmware design on track.

On schedule for installation into ATLAS cavern after the end of Run 3!

References

[1] ATLAS Collaboration. ATLAS liquid-argon calorimeter: Technical Design Report, CERN-LHCC-96-041. [2] ATLAS Collaboration. ATLAS LAr Calorimeter Phase-I Upgrade: Technical Design Report. CERN-LHCC-2013-017. [3] ATLAS Collaboration. ATLAS LAr Calorimeter Phase-II Upgrade: Technical Design Report. CERN-LHCC-2017-018.

LHCP 2023 - Large Hadron Collider Physics Conference. Belgrade, 22-26 May 2023