LUXE.

A NEW EXPERIMENT TO STUDY NON-PERTURBATIVE QED AND SEARCH FOR **NEW PARTICLES IN ELECTRON-LASER AND PHOTON-LASER COLLISIONS**

Federico Meloni (DESY), for the LUXE Collaboration

Strong-field QED?

Key questions and quantities.

How do e^+ , e^- or γ behave when propagating in a very strong field?

Could new particles be produced in rare photon interactions with matter?

Highly-boosted electrons ($\gamma_e \sim 10^4$) and high-intensity laser pulses (of frequency ω_L) allow us to study ε_{cr}

Quantum parameter $\chi_{\gamma} = (1 + \cos \theta) \frac{E_{\gamma}}{m} \frac{\varepsilon_L}{m}$

Field intensity parameter

Quantum electrodynamics (QED) is the world's most precisely known (and tested) theory

Vacuum polarisation increases α_{EM} with energy

- At high energies, perturbative expansions fail \bullet
- The Schwinger limit $\varepsilon_{cr} = 1.32 \cdot 10^{18}$ V/m defines the strong-field regime of QED

LUXE (Laser Und XFEL Experiment) will investigate the transition into the non-perturbative regime of QED for the first time

Goals.

Nonlinear Compton scattering

Reconstruct Compton edge in electron or photon spectrum

Nonlinear Breit-Wheeler

Measure positron rate

Search for BSM physics

Use Compton-photon beam in a beamdump experiment

LHCP 2023 – Belgrade, 22-26 May 2023