

Axion results from the LHC, including future prospects

DAVIDE ZULIANI, on behalf of the ATLAS, CMS and LHCb collaborations UNIVERSITY AND INFN OF PADOVA

and LHCb collaborations LHCP (BELGRADE) - MAY 22, 2023

Introduction to Axion Like Particles (ALPs)

- Axions have been postulated in 1977 to solve the strong CP problem
- Very light (pseudo)scalars particles
 - If no dependence between mass and coupling \rightarrow ALPs!
- ALPs are pseudo Nambu-Goldstone bosons associated to **Spontaneous Symmetry Breaking**
- Several motivations to search for ALPs:
 - Could be valid DM candidate, or DM mediator
 - Could explain g-2 discrepancies
- ALPs can couple to different sectors of the SM
 - Different kind of searches at colliders!

DAVIDE ZULIANI

Overview of LHC results

DAVIDE ZULIANI

AXION RESULTS FROM THE LHC, INCLUDING FUTURE PROSPECTS

Università degli Studi di Padova

- $pp \rightarrow pp\gamma\gamma$
- $pp \rightarrow a \rightarrow \gamma \gamma$
- PbPb $\rightarrow a \rightarrow \gamma \gamma$

- PbPb $\rightarrow a \rightarrow \gamma \gamma$
- $H \rightarrow aa \rightarrow \gamma \gamma \gamma \gamma$
- $pp \rightarrow pp\gamma\gamma$

- Goal: search for forward proton scattering with light-by-light scattering
- Dataset: 2017 data, with $\mathscr{L} = 14.6 \text{ fb}^{-1}$ and $\sqrt{s} = 13 \text{ TeV}$
- Tag forward protons (with AFP) while detecting pair of photons in th central detector
- Target mass range: $150 < m_a < 1600 \text{ GeV}$
- Three possible interactions: exclusive, single (SD) and double dissociative (DD)
- Diphoton trigger: two EM clusters with $E_T > 25,35$ GeV
- Tight selection requirements:
 - $E_{\rm T} > 22$ GeV, $|\eta| < 2.37$
 - $p_{\rm T} > 40 {\rm ~GeV}$
 - $|\Delta\xi| = |\xi_{AFP} \xi\gamma\gamma| < 0.004 + 0.1\xi_{\gamma\gamma}$, where $\xi = 1 E_{\text{scattered}}/E_{\text{beam}}$
- Signal modeling with DSCB fitting MADGRAPH simulations
- Main background: pair of photons (or misidentified jet) in the same bunch crossing

DAVIDE ZULIANI

AXION RESULTS FROM THE LHC, INCLUDING FUTURE PROSPECTS

- Unbinned maximum-likelihood fit it to $m_{\gamma\gamma}$
 - Fit procedure dominated by statistical uncertainty
 - Systematic uncertainties are included as nuisance parameters
- 441 events are found in the [150,1600] GeV range
- Local *p*-value evaluation shows an excess at $m_{\gamma\gamma} = 454 \text{ GeV}$

$$pp \to a \to \gamma\gamma$$

- Goal: search for boosted diphoton resonances, with $10 < m_{\gamma\gamma} < 70 \text{ GeV}$
- Dataset: Run 2 data, with $\mathscr{L} = 138 \text{ fb}^{-1}$ and $\sqrt{s} = 13 \text{ TeV}$
- Boosted topology \rightarrow allows for search to lower masses
- Tight selection requirements for photons:
 - $E_{\rm T} > 22$ GeV, $|\eta| < 2.37$
 - Shape of EM showers and leakage in HCAL
 - Photons are isolated
 - $p_{\rm T}^{\gamma\gamma} > 50 \,\,{\rm GeV}$
- Signal modeling with DSCB fitting MADGRAPH simulations
- Background components: $\gamma\gamma$, $\gamma + j$ and jj
- Data-driven technique to model backgrounds with analytic functions
 - Main uncertainty: limited size of simulated samples

DAVIDE ZULIANI

 $\rightarrow \alpha \rightarrow \gamma \gamma$

- Evaluation of $\sigma \cdot \mathscr{B}(a \to \gamma \gamma)$ in fiducial region $\to \sigma_{\rm fid} \cdot$
- N extracted with a binned maximum-likelihood fit to $m_{\gamma\gamma}$
- Systematic uncertainties are included as nuisance parameters
 - Highest uncertainty comes from background modelling
- No significant deviations from SM predictions are found

DAVIDE ZULIANI

$$\mathscr{B}(a \to \gamma \gamma) = \frac{N}{C \cdot \mathscr{L}}$$

- Limits on $\sigma_{\text{fid}} \cdot \mathscr{B}(a \to \gamma \gamma)$ are recast in the parameter space of ALP
- Upper limit on $\sigma_{\text{fid}} \cdot \mathscr{B}(a \to \gamma \gamma)$ results in a lower limit on f_a
- Large portion of ALP parameter space is covered

PbPb $\rightarrow a \rightarrow \gamma \gamma$

- Equivalent photon flux scales with Z^4
 - Pb beams optimal source of high energy photons
- Goal: measure light-by-light scattering based on PbPb collisions
- Dataset: Run 2 data, with $\mathscr{L} = 2.2 \text{ nb}^{-1}$ and $\sqrt{s_{\rm NN}} = 5.02 \text{ TeV}$
- Target mass range: $6 < m_a < 100 \text{ GeV}$
- Requiring exactly two photons with:
 - $E_{\rm T} > 2 \,\,{\rm GeV}, \,|\eta| < 2.37$
 - $m_{\gamma\gamma} > 5 \text{ GeV}, p_T^{\gamma\gamma} < 1 \text{ GeV}$
 - Veto on charged-particle tracks
- Main backgrounds: $\gamma\gamma \rightarrow ee$ and CEP $\gamma\gamma$
 - Data-driven estimation with control regions \bullet

AXION RESULTS FROM THE LHC, INCLUDING FUTURE PROSPECTS

$PbPb \rightarrow a \rightarrow \gamma\gamma$

- Differential cross section as a function of $m_{\gamma\gamma}$, $|y_{\gamma\gamma}|$,
- Cross-section extracted as $\sigma_{\rm fid} = (N_{\rm data} N_{\rm bckg})/(C \cdot$

DAVIDE ZULIANI

$$(p_{\rm T}^{\gamma 1} + p_{\rm T}^{\gamma 2})/2 \text{ and } |\cos(\theta^*)|$$

 \mathscr{L}

PbPb $\rightarrow a \rightarrow \gamma \gamma$

- Similar study similar to the one performed by ATLAS
- Goal: measure light-by-light scattering based on PbPb collisions
- Dataset: Run 2 data, with $\mathscr{L} = 2.2 \text{ nb}^{-1}$ and $\sqrt{s_{\text{NN}}} = 5.02 \text{ TeV}$
- Same selection requirements and analysis procedure as ATLAS

- - ALPs coupling only to photons
 - ALPs coupling also to Z \bullet

DAVIDE ZULIANI

Phys. Lett. B 797 (2019)

$H \rightarrow aa \rightarrow \gamma \gamma \gamma \gamma$

- Goal: search for exotic Higgs decay to a pair of light pseudoscalars
- Dataset: Run 2 data, with $\mathscr{L} = 132 \text{ fb}^{-1}$ and $\sqrt{s} = 13 \text{ TeV}$
- Identify 4 high-energetic and well-isolated photons
- Quite standard selections for at least 4 photons:
 - $|\eta| < 2.37$ for all photons
 - $p_{\rm T} > 30 \text{ GeV}$ ($p_{\rm T} > 18 \text{ GeV}$) for (sub)leading photon, $p_{\rm T} > 15 \text{ GeV}$ for remaining photons
 - Electron veto
 - $110 < m_{\gamma\gamma\gamma\gamma} < 180 \text{ GeV}$
 - 4-photon classifier (BDT) to distinguish signal versus background
- Background estimation using data-driven method through "event mixing"

degli Studi

$H \to aa \to \gamma \gamma \gamma \gamma$

- Simultaneous unbinned maximum-likelihood fit of $m_{\gamma\gamma}$ in all analysis categories
- No deviation from SM expectation is found

- Upper limits at 95% CL
- Pseudoscalar bosons ranging in mass in [15,62] GeV range

- Goal: search for forward proton scattering with light-by-light scattering
- Dataset: 2016 data, with $\mathscr{L} = 9.4 \text{ fb}^{-1}$ and $\sqrt{s} = 13 \text{ TeV}$, CMS+TOTEM
- Target mass range: $m_{\gamma\gamma} > 350 \text{ GeV}$
- Selection requirements:
 - $p_{\rm T}^{\gamma} > 75$ GeV, $|\eta_{\gamma}| < 2.5$
 - Cut on cluster shape to ensure isolation (R_9 variable)
 - Cuts on $\xi_{\gamma\gamma}, \xi$
- Background contributions:
 - Inclusive $\gamma\gamma$
 - γ +jet, γ + Z, γ + W
- Tighter requirements keep only inclusive $\gamma\gamma$

degli Stud

RPS Events 10⁵ **⊂ CMS** Incl. γ + Incl. Zy 10⁴ 10³

• Limits on cross-section are used to probe 4-photon anomalous quartic gauge couplings

• This analysis provided the first limit for the SM for light-by-light production cross-section at high energies

$$pp \to a \to \gamma\gamma$$

- Currently, light ALPs are not reachable by ATLAS and CMS \rightarrow LHCb can go to lower masses!
- Dedicated trigger lines ($B_s \rightarrow \gamma \gamma$) to select low-energy photons
- Limits extraction using 80 pb^{-1} of LHCb public data

LHCb-PUB-2018-006

Variable	θCV	1CV LL	1CV DD	2CV
Calo γ CL	> 0.3	> 0.3	> 0.3	_
Calo $\gamma \ p \ [\text{GeV}/c]$	> 6	> 6	> 6	_
Calo $\gamma E_{\rm T}$ [GeV]	> 3	> 3	> 3	_
Converted $\gamma p_{\rm T}$ [GeV/c]	_	> 2.0	> 2.0	> 2.0
Converted $\gamma M [MeV/c^2]$	_	< 60	< 60	< 60
Converted $\gamma \ \chi^2_{ m IP}$	—	> 4	> 0	> 1
$\sum p_{\mathrm{T},\gamma} \mathrm{[GeV]}$	> 6.5	> 5.5	> 5.5	> 5
$B_s^0 p_{ m T} \left[{ m GeV} / c ight]$	> 3.0	> 3.0	> 3.0	> 3.0
$B_s^0 \; \chi^2_{ m vtx}$	_	—	—	< 20
$M_{B^0_s} \left[{ m GeV}/c^2 ight]$	$\left[4.3, 6.3 ight]$	$\left[4.3, 6.3\right]$	$\left[4.3, 6.3\right]$	$\left[4.5, 6.1\right]$
Fraction of signal	83.4%	4.3%	11.7%	0.6%

- Experimental analysis currently ongoing
 - Analysing data from 2018, using $\mathscr{L} = 2.07 \text{ fb}^{-1}$
 - Currently relying only on unconverted photons

1810.09452

Future prospects

- more stringent limits
- advanced Machine Learning algorithms

AXION RESULTS FROM THE LHC, INCLUDING FUTURE PROSPECTS

UNIVERSITÀ degli Stud DI PADOVA

DAVIDE ZULIANI

