Triboson Measurements at ATLAS and CMS

Alessandro Ambler

on behalf of the ATLAS and CMS collaborations

LHCP2023 in Belgrade

Motivation

- Triboson final states are rare and some are only now becoming accessible at the LHC
 - Many first observations in this presentation!
- Probe of non-Abelian self couplings of the electroweak gauge bosons in the Standard Model (SM)
 - Sensitive to anomalous Quartic Gauge Coupling (aQGC) operators
 - Can be used to set limits within Effective Field Theories (EFT)
- Backgrounds to SM processes like ZH(γγ) and WH(γγ) that will become accessible at run 3 and beyond
- Some final states can be used to probe Higgs couplings to light quarks

LHCP2023

Alessandro Ambler (McGill University)

Overview

- Measurements covered in this talk
 - Wγγ, Zγγ and WZγ by ATLAS [1] [2] [3]
 - WWγ and Vγγ by CMS [4] [5]
- Measurements not covered in this talk
 - WVV, WWW by ATLAS [6] [7]
 - VVV by CMS [8]

ATLAS-CONF-2023-005

- First observation at 5.6σ (5.6σ) obs.(exp.)!
 - $\sigma^{\text{meas}} = 12.2^{+2.1}_{-2.0}$ fb, in agreement with SM
 - Dominant uncertainties : systematic on $j \rightarrow \gamma$ followed by stat. uncertainty
- e/μ channels, 13 TeV, 140 fb⁻¹
 - b-jet veto to reduce top backgrounds

Important backgrounds :

- j→γ, largest background
 - 2D template fits in data on leading and subleading photon isolation energy
- $e \rightarrow \gamma$, second largest background in e channel
 - Data-driven fake rate estimate $Z \rightarrow ee/e\gamma$ CR
- **Top background constrained in** ≥ 1 **b-jet CR** simultaneously with SR
 - Validated in low E_T^{miss} region with ≥ 1 b-jet

CMS-PAS-SMP-22-006

WWv

- First observation at 5.6σ (4.7 σ) obs. (exp.)!
 - $\sigma^{\text{meas}} = 6.0 \pm 1.0 \text{ (stat.)} \pm 1.0 \text{ (syst.)} \pm 0.9 \text{ (theo.) fb, in agreement with SM}$
 - Statistical, systematic and theory uncertainties comparable
 - Limits set on Higgs Yukawa couplings to u, d, s, c quarks
- e/μ channel, 13 TeV, 138 fb⁻¹
 - OFOS ($W^+W^- \rightarrow e\nu\mu\nu$)
 - b-jet veto to reduce WZy and top backgrounds
- Important backgrounds :
 - $j \rightarrow \gamma$, largest background
 - Data-driven fake rate estimate in W+jets CR with a fit to the photon shower width to extract non-prompt component
 - $j \rightarrow l$, significant background
 - Data driven fake rate estimate in dijet CR with lepton balanced by jet
 - **SSWW and Top CR** with ≥ 1 b-jet used to validate and constrain both $j \rightarrow l$ and $j \rightarrow \gamma$ backgrounds in simultaneous fit

Η

<u>ATLAS-CONF-2023-014</u>

- First observation with 6.3σ (5.0 σ) obs. (exp.)!
 - $\sigma^{\text{meas}} = 2.01 \pm 0.30 \text{ (stat.)} \pm 0.16 \text{ (syst.) fb, within } 1.5\sigma \text{ of SM}$
 - Systematic uncertainty dominated by stat. uncertainty in non-prompt CRs
- e/μ channels, 13 TeV, 140 fb⁻¹
 - At least one SFOS pair,
 - $|m(e_w\gamma) m(Z)| > 10$ GeV to reduce $e \rightarrow \gamma$ events
 - $m(l_z l_z) > 81 \text{ GeV to reduce FSR}$
- Important backgrounds :
 - j→γ background
 - Data-driven fake rate estimated in Z+jet CR
 - $j \rightarrow l$ background
 - Data-driven fake rate estimated in dijet CR with one lepton balanced by a jet
 - ZZy and $e \rightarrow \gamma$ background from ZZ
 - MC normalized in CRs

JHEP 2021

- $Z\gamma\gamma: 4.8\sigma (5.8\sigma)$ obs. (exp.)
 - Stat. and syst. are comparable
- Wγγ : 3.1σ (4.5σ) obs. (exp.)
 - Systematics dominated
- Limits set on 10 aQGC operators using EFT approach
- e/μ channels, 13 TeV, 137 fb⁻¹
 - γ removed if $|m(e\gamma) m(Z)|$ or $|m(e\gamma\gamma) m(Z)| < 5$ GeV to reduce FSR

JHEP 2021

CMS

- Important backgrounds :
 - $\mathbf{j} \rightarrow \mathbf{\gamma}$ **background**, dominant in both W and Z channels
 - Probability for photons and jets to be isolated estimated in MC and data respectively
 - Validation region where both photons fail isolation
 - $e \rightarrow \gamma$ background, second largest in W electron channel
 - Scale factor computed in Zy region
 - Signal and background extracted from fit on $m(e\gamma_{lead})$
 - Correction factor applied to MC
 - On average $\approx 20\%$

accepted by EPJ C

- **Differential cross section** along 6 kinematic variables
 - $\sigma^{\text{meas}} = 2.45 \pm 0.20 \text{ (stat.)} \pm 0.22 \text{ (syst.)} \pm 0.04 \text{ (lumi) fb}$
 - Uncertainty on $j{\rightarrow}\gamma$ dominates systematic uncertainty
- Limits set on 8 aQGC parameters using EFT approach
 - With and without clipping to constrain unitarity
- e/μ channels, 13 TeV, 139 fb-1
 - Cut on m(ll) and min(m(ll γ_1), m(ll γ_2)) to minimize FSR

- Important backgrounds :
 - $j \rightarrow \gamma$, largest background
 - Photon isolation efficiency and $j{\rightarrow}\gamma$ fake rate estimated in MC and data respectively
 - tt̄ γγ background, MC
 - Normalized in OFOS CR
 - $Z\gamma+\gamma$ and $Z+\gamma\gamma$ pileup background, MC
 - Estimated by overlaying Zγ and γ MC and Z and γγ MC events

Alessandro Ambler (McGill University)

Summary & Outlook

- **Exciting new first observations** of Wγγ and WZγ by ATLAS and WWγ by CMS
- New limits set on aQGC operators with the Zγγ and Vγγ analyses by ATLAS and CMS respectively
- New limits on Higgs coupling to light quarks with WWγ analysis by CMS
- No significant tension with SM as of yet
- With run 3 right around the corner, **many** thing to look forward to!

References

[1] ATLAS Collaboration (2023). Observation of Wyy triboson production in proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector. CERN.

[2] ATLAS Collaboration. (2022). Measurement of $Z\gamma\gamma$ production in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector. CERN.

[3] ATLAS Collaboration (2023). Observation of WZy production in pp collisions $\sqrt{s} = 13$ TeV with the ATLAS detector. CERN.

[4] CMS Collaboration (2023). Observation of WWy production and constraints on Higgs couplings to light quarks in proton-proton collisions at $\sqrt{s} = 13$ TeV. CERN.

[5] CMS Collaboration (2021). Measurements of the pp \rightarrow Wyy and pp \rightarrow Zyy cross sections at \sqrt{s} = 13 TeV and limits on anomalous quartic gauge couplings. *Journal of High Energy Physics*.

[6] ATLAS Collaboration (2019). Evidence for the production of three massive vector bosons with the ATLAS detector. *Physics Letters B*, 798, 134913.

[7] ATLAS Collaboration (2022). Observation of WWW Production in pp Collisions at $\sqrt{s} = 13$ TeV with the ATLAS Detector. *Phys. Rev. Lett.*, 129, 061803.

[8] CMS Collaboration (2020). Observation of the Production of Three Massive Gauge Bosons at $\sqrt{s} = 13$ TeV. *Phys. Rev. Lett.*, *125*, *151802*.