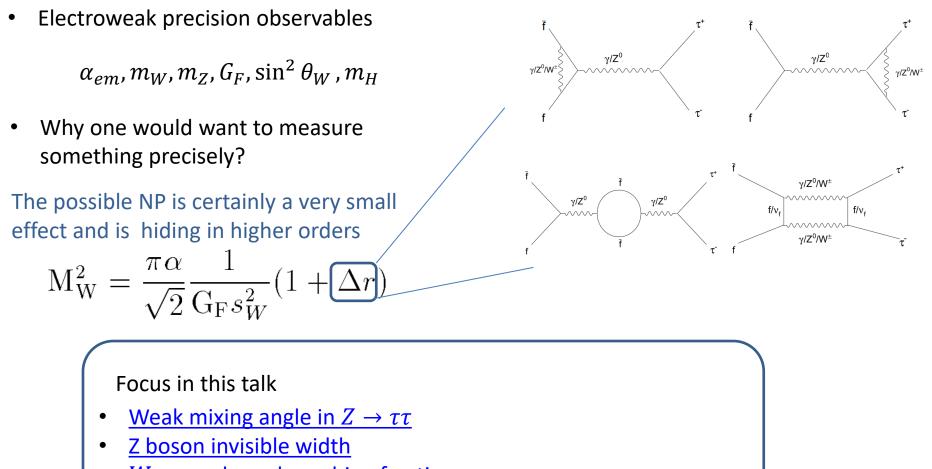


Recent EWK precision measurements in CMS

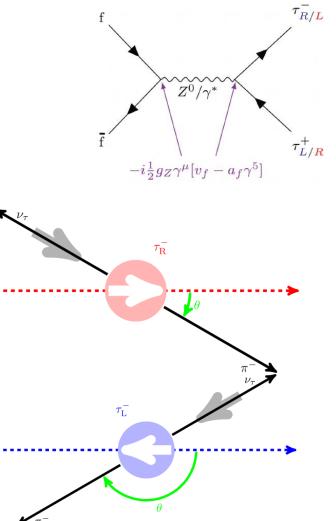

Vladimir Cherepanov on behalf of the CMS collaboration

26.05.2023 LHCP 2023

EWK precision measurements

• $W \rightarrow \tau \nu$ decay branching fraction

CMS-PAS-SMP-18-010

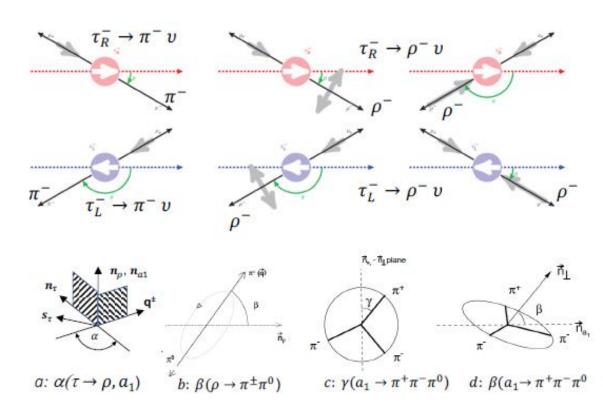

- Z boson couplings are different for left and righthanded fermions.
- Tau lepton is a brilliant tool → one can measure its spin in the detector.
- The τ-lepton polarization asymmetry:

$$P_{\tau} = \frac{\sigma(\tau_R^-) - \sigma(\tau_L^-)}{\sigma_{total}}$$

• At Z-pole proportional to au weak couplings

 $P_{\tau} = -A_{\tau} = -\frac{2v_{\tau}a_{\tau}}{v_{\tau}^2 + a_{\tau}^2} \approx -2 \cdot \frac{v_{\tau}}{a_{\tau}} = -2(1 - 4\sin^2\theta_W^{\text{eff}})$

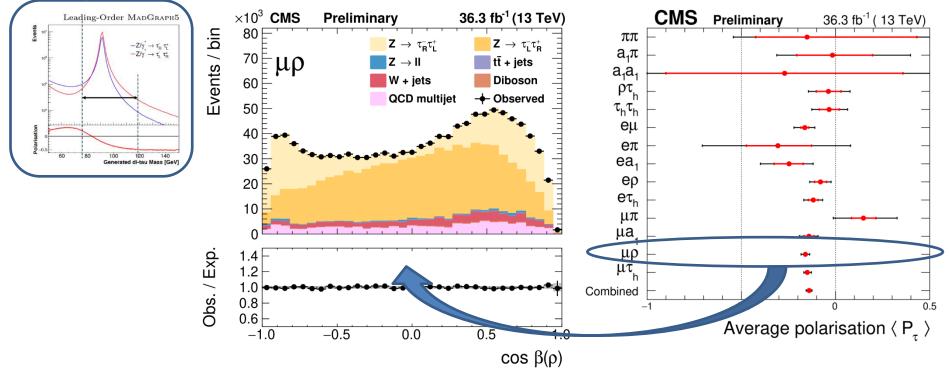
• The τ helicity state determined from the angular distributions of decay products (wrt to τ and/or wrt to each other)



τ-lepton polarization in Z-boson decays

CMS-PAS-SMP-18-010

- A sensitive observable for each tau decay
- If several observables -> combine into onedimensional
- Reconstruct the polarimetric vector where possible (maximum sensitivity)
- Helicity states of both taus are 100% anti-correlated

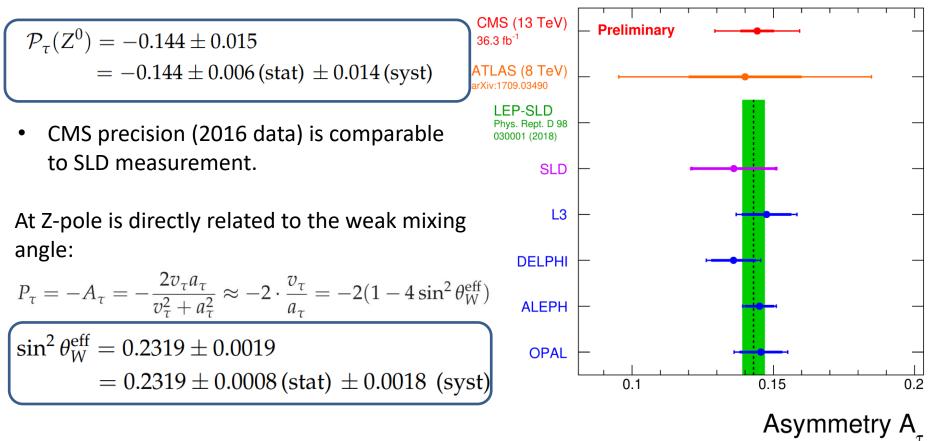


• Cover all possible au decays

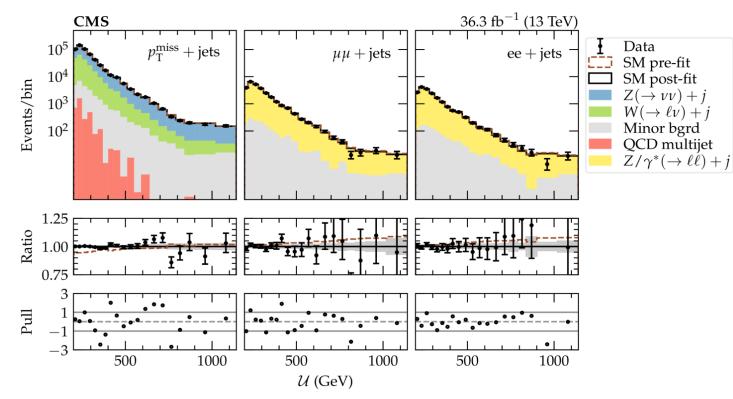
CMS-PAS-SMP-18-010

UNIVERSITY of **FLORIDA**

- When more than one spin-sensitive observable → combined into one (accounting for τ-leptons spin correlation)
- Measured polarization asymmetry is an average over the Z line shape.

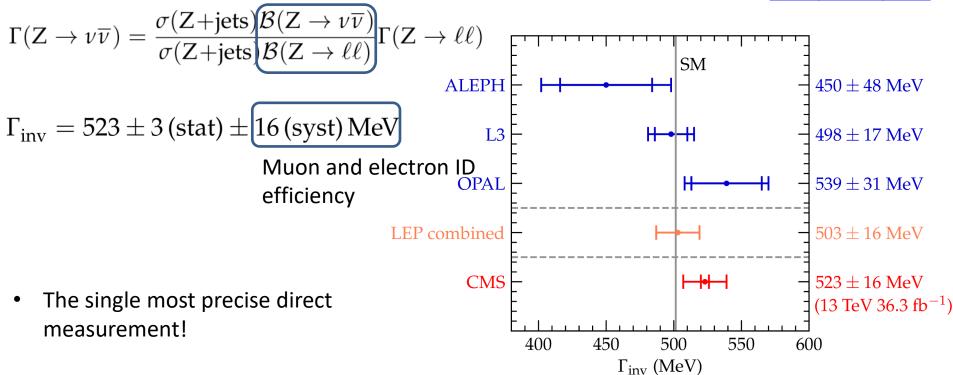


 Average polarization corrected to the Z pole can be compared to LEP


Complementary to the weak mixing angle measured in $Z \rightarrow \mu\mu$ and $Z \rightarrow ee$.

Z boson invisible width

arXiv:2206.07110 Accepted by PLB


- Constraint on the number of neutrino types
- Look for very energetic jet accompanied by a large missing transverse momentum
- Z boson is transversely boosted
- Simultaneous fit in signal and $Z/\gamma^* \rightarrow \mu\mu$ (*ee*) + jets categories

Z boson invisible width

arXiv:2206.07110 Accepted by PLB

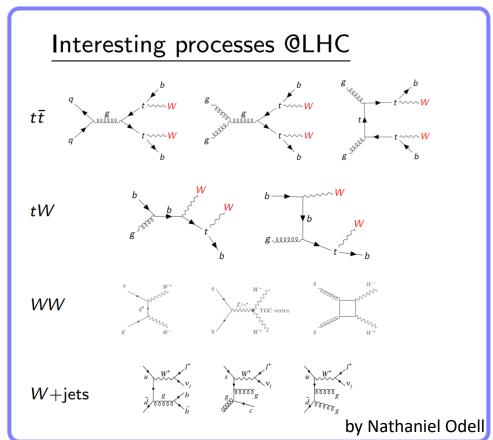
Competitive to combined LEP value and compatible with expected in SM.

CMS

The width is determined as:

$\underbrace{\mathsf{CMS}}_{W} \to \tau \nu \text{ decay branching fraction } \underbrace{\mathsf{VF}}_{\mathsf{FLORIDA}}$

Phys. Rev. D 105, 072008


- Test of Lepton Universality
- The LEP combination indicated 2.6 deviation from W decay to electron and muon.

 $\frac{2B(W \to \tau \nu_{\tau})}{B(W \to e\nu_e) + B(W \to \mu \nu_{\mu})} = 1.066 \pm 0.025$

$$\frac{\mathcal{B}(W \to h)}{1 - \mathcal{B}(W \to h)} = \left(1 + \frac{\alpha_{\rm S}(m_W^2)}{\pi}\right) \sum_{\substack{i=(u,c),\\j=(d,s,b)}} |V_{ij}|^2$$

Advantage of LHC is huge W production rate

- $t\bar{t}$ as a main source, clean signature (jet multiplicity, b-tagging)
- Also consider other W sources:
 tW, *WW*, *W* + *jets*

CMS $\rightarrow \tau \nu$ decay branching fraction UNIVERSITY of FLORIDA

Phys. Rev. D 105, 072008

 $N_{\rm j} = 2 \mid N_{\rm j} = 3 \mid N_{\rm j} \ge 4$

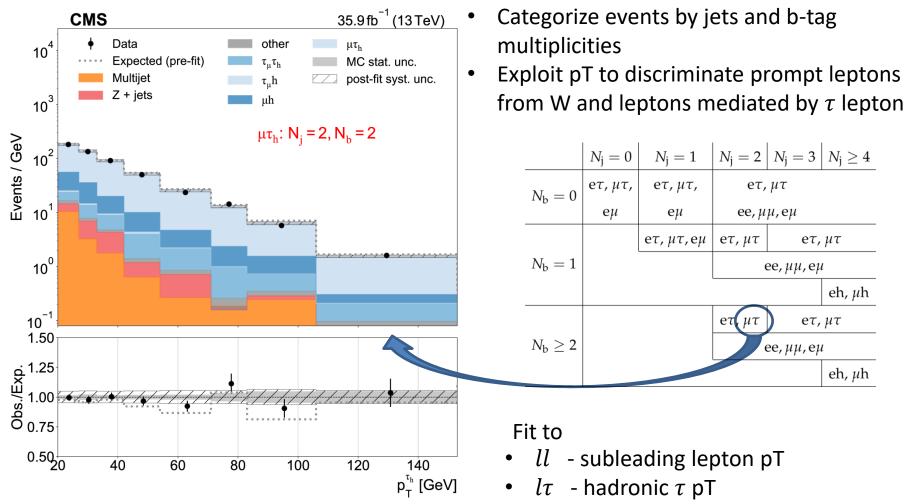
ee, µµ, eµ

ee, µµ, eµ

eτ, μτ

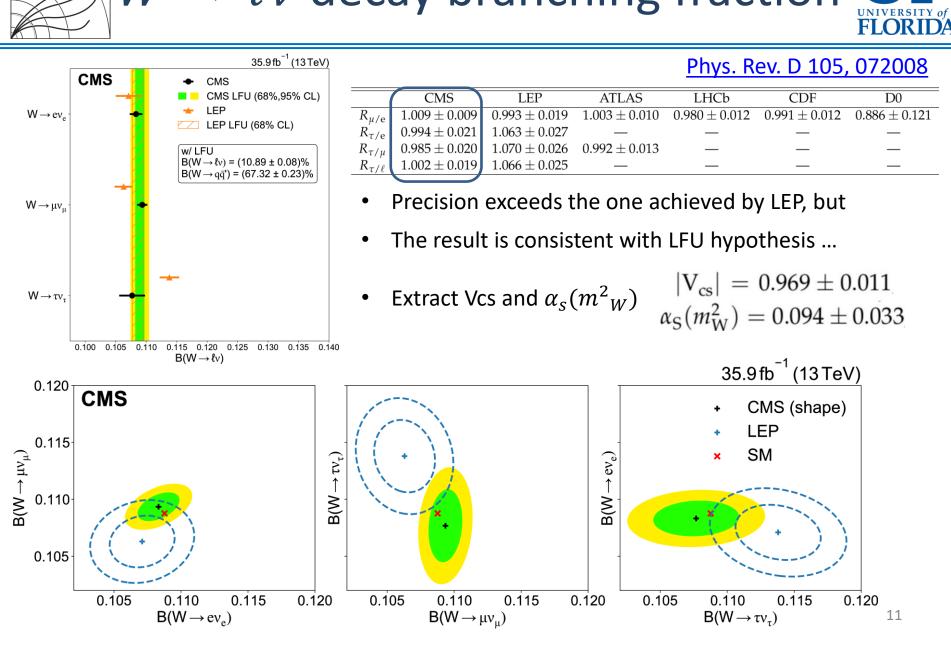
eτ, μτ

eh, µh


eh, µh

eτ, μτ

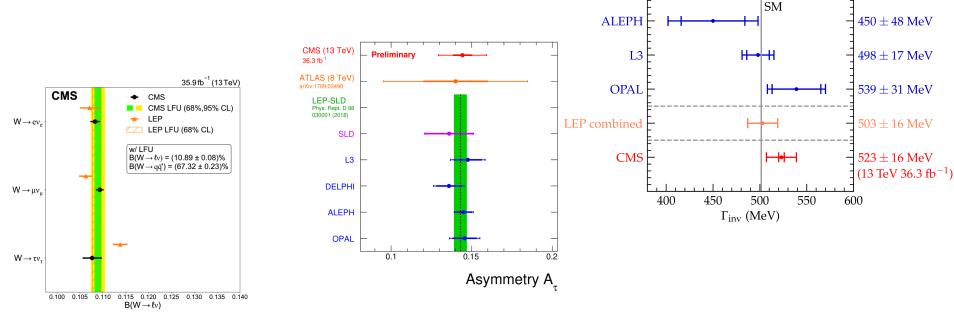
ee, µµ, eµ


eτ, μτ

ετ, μτ

lh - lepton pT

$V \rightarrow \tau \nu$ decay branching fraction



- In many areas CMS approaching or already exceeding the LEP precision
- Increasing accuracy is not easy, but every step forward becomes intriguing!

Additional material

Additional material

CMS

Source of uncertainty	Prefit uncertainty per channel			
	$ au_{ m h} au_{ m h}$	$ au_{\mu} au_{ m h}$	$ au_e au_{ m h}$	$ au_e au_\mu$
$e \rightarrow \tau_h$ fake rate	10%	< 40%	10%	-
$\mu ightarrow au_h$ fake rate		< 40%		-
jet $ ightarrow au_h$ fake rate	$p_{ m T}$ -dependent $pprox 20\% imes p_T^{jet}/100{ m GeV}$			
Tau identification efficiency	$p_{\rm T}$ MVA-DM -			
Tau trigger efficiency	p_{T} N	IVA-DM	-	-
Electron trigger efficiency	-	-	p_{T} N	IVA-DM
Muon trigger efficiency	-	$p_{\mathrm{T}} \eta$	-	$p_{\rm T}$ MVA-DM
Hadronic tau energy scale	$p_{\rm T}$ MVA-DM $< 2\%$ -			
Neutral, charged hadrons energy	2%	2%	2%	-
Muon energy scale	-	0.4–2.7%	-	0.4–2.7 %
Muon to tau fake energy scale	-	1%	-	-
Electron energy scale	Event-dependent			
Electron to tau fake energy scale	-	-	0.8–6.6%	-
Misidentified $ au_{ m h} ightarrow h^{\pm}$	2.8%	2.8%	2.8%	-
Misidentified $ au_{ m h} ightarrow h^{\pm} \pi^0$	3.2%	3.2%	3.2%	-
Misidentified $ au_{ m h} ightarrow h^{\pm} h^{\pm} h^{\pm}$	3.7%	3.7%	3.7%	-
Parton re-weighting	100% for all channels			
Drell-Yan MC re-weighting	100% for all channels			
Top p_T re-weighting	100% for all channels			
MC comparison for signal	100% for all channels			
p_T^{miss} unclustered scale	Event-dependent, but negligible			
p_T^{miss} recoil correction	Event-dependent, but negligible			
Limited MC statistics	Bin by bin fluctuations			

Additional material

Source of systematic uncertainty	Uncertainty (%)	
Muon identification efficiency (syst.)	2.1	
Jet energy scale	1.8-1.9	
Electron identification efficiency (syst.)	1.6	
Electron identification efficiency (stat.)	1.0	
Pileup	0.9–1.0	
Electron trigger efficiency	0.7	
τ_h veto efficiency	0.6–0.7	
$p_{\rm T}^{\rm miss}$ trigger efficiency (jets plus $p_{\rm T}^{\rm miss}$ region)	0.7	
$p_{\rm T}^{\rm miss}$ trigger efficiency (Z/ $\gamma^* \rightarrow \mu\mu$ region)	0.6	
Boson $p_{\rm T}$ dependence of QCD corrections	0.5	
Jet energy resolution	0.3–0.5	
$p_{\rm T}^{\rm miss}$ trigger efficiency (μ +jets region)	0.4	
Muon identification efficiency (stat.)	0.3	
Electron reconstruction efficiency (syst.)	0.3	
Boson $p_{\rm T}$ dependence of EW corrections	0.3	
PDFs	0.2	
Renormalization/factorization scale	0.2	
Electron reconstruction efficiency (stat.)	0.2	
Overall	3.2	