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PART I 
Introduction



ℒSM
26 Free parameters:  Now mostly determined 

experimentally (it’s a deterministic theory) 


(Only freedom on input parameter scheme and 
renormalisation scales) 
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Define an extension of the SM: sticking to the 
known symmetries or allowing for new ones

Classic EWSB:

Non-linear alternative: 



PART II 
SMEFT after RUN-II: fitting differential distributions and unbinned objects 



LHC RUN 2 Global search for deviatons

For the first time we can perform “local” fits outside of the Higgs sector

Global fits of the whole SMEFT picture come out

Figure 2: Results from global fits in the Warsaw basis (orange) including all operators

simultaneously (upper panel) and switching each operator on individually (lower panel).

Also shown are fits omitting the LHC Run 2 data (blue). We display the best-fit values and

95% CL ranges.
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Figure 4.3. The best-fit values and 95% CL intervals for a global fit based on linear EFT calculations,
comparing the outcome of the NS and MCfit methods. We display the results corresponding to the 50
coe�cients listed in Table 2.5 (except for c¸¸ = 0), of which 36 are independent fit parameters. The
bottom panel displays the magnitude of the 95% CL intervals.

interpretation of these results in Sect. 5, here we only aim to establish that the two methods
indeed lead to equivalent results.

The comparison of Fig. 4.3 demonstrates that in general the two methods are in excellent
agreement, both in terms of best-fit values and of the corresponding uncertainties. This said,
for specific coe�cients one observes small di�erences, with MCfit in general tending to provide
somewhat looser bounds. The reason for this behaviour is that optimisation-based methods
such as MCfit can be distorted by fitting ine�ciencies, such as when the optimiser finds a
local, rather than global, minimum. This phenomenon is further illustrated in Fig. 4.4, which
compares the ‰2 distributions evaluated over replicas and posterior samples in the MCfit
and NC methods respectively. We observe that the MCfit distribution exhibits broader tails,
implying that the bounds obtained this way might in some cases be slightly over-conservative.

Fig. 4.3, as well as the corresponding benchmark comparison for fits based on quadratic
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LHC RUN 2 Several new measurements in the EW sector

How do these fits work?


1. Select a theory (usually SMEFT, dim6, leading order, with 10-20 
operators) 


2. Perform simulations with MonteCarlo generators with the SEMFT 
coefficients as free parameters 


3. Select from the available EXP data


4. Perform a fit (simple chi2, nested sampling, machine learning…)  



LHC RUN 2 Several new measurements in the EW sector

How do these fits work?

1. Select a theory (usually SMEFT, dim6, leading order,                             

with O(10) operators) 

2. Perform simulations with MonteCarlo generators with the 

SEMFT coefficients as free parameters 

3. Select from the available EXP data

4. Perform a fit (simple chi2, nested sampling, machine 

learning…)  

Happy to discuss a  
common strategy with  
experimental groups!
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Figure 4.5. Graphical representation of the results of Table 4.2, displaying the absolute value (upper)
and the magnitude (bottom panel) of the 95 % CL intervals associated to each of the 16 EFT operators
considered here. We compare the marginalised results of a diboson-only fit (blue) with the same fit
once VBS data is added (orange) in both cases when all coe�cients are fitted simultaneously. For
reference, we also show the results of the individual VBS+diboson fits, where only one operators is
varied at the time and the rest are fixed to their SM value.
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Example: analysis of VBS and diboson

• Fit of dim-6 EFT  


• Include only VBS and 
diboson data (independent 
of Higgs sector) 


• Interesting results, but 
unfortunately no new 
physics -yet - in the VBS 
sector


• Would be great to see this 
implemented in the exp 
analyses


• Many improvements can 
be done

LHC RUN 2
https://arxiv.org/abs/2101.03180

https://arxiv.org/abs/1809.04189

https://arxiv.org/abs/2101.03180
https://arxiv.org/abs/1809.04189


LHC RUN 2 Several new measurements in the EW sector

Handicaps: 

• we can only use 1 

measurement per 
analysis, sometimes 
even incurring in 
double counting of 
events


• The measured 
distributions are not 
always the ones with 
more EFT sensitivity


Final state Selection Observable ndat L (fb
≠1

) Label Ref.

W±W±jj

EW-only ‡fid 1 36.1 ATLAS_WWjj_fid [16]

EW-only ‡fid
4 137

CMS_WWjj_fid
[15]

EW+QCD d‡/dmll
(ú) CMS_WWjj_mll

ZW±jj

EW+QCD d‡/dmTW Z
5 36.1 ATLAS_WZjj_mwz [17]

EW-only ‡fid
4 137

CMS_WZjj_fid
[15]

EW+QCD d‡/dmjj
(ú) CMS_WZjj_mjj

ZZjj
EW+QCD ‡fid 1 139 ATLAS_ZZjj_fid [18]

EW-only ‡fid 1 139 CMS_ZZjj_fid [19]

“Zjj
EW-only ‡fid 1 36.1 ATLAS_AZjj_fid [20]

EW-only ‡fid 1 35.9 CMS_AZjj_fid [21]

VBS total (unfolded) 18

ZZjj EW+QCD+Bkg Events/mZZ 4 139 CMS_ZZjj_mzz [19]

“Zjj EW+QCD+Bkg Events/pT¸¸“
11 36.1 ATLAS_AZjj_ptlla [20]

VBS total (detector-level) 15

Table 3.2. Overview of the VBS measurements considered in this EFT analysis. We indicate the
final state, the selection criteria, the experimental observable, the number of data points ndat and
integrated luminosity L. In the datasets labelled with (ú), one bin from the di�erential distribution
has been traded for the fiducial cross section. We separate the unfolded (baseline) from the detector-
level (used for cross-checks) datasets.

di�erential cross-sections for di�erent kinematic variables have been available for some time
already.

Opposite-sign W±Wû production. This channel has been measured by ATLAS based
on the L = 36 fb≠1 [55, 135] data in the eµ final state. Several di�erential distributions are
available with their corresponding bin-by-bin correlation matrices. From CMS, we include
their recent measurement [56, 136] based on the same luminosity, where events containing
two oppositely charged leptons (electrons or muons) are selected. In our EFT analysis, we
will include the same di�erential distribution, mµe, from both ATLAS and CMS consisting
of ndat = 13 data points in each case. While the ATLAS distribution is provided as an
absolute distribution, the CMS is normalised to the fiducial cross-section. Since the EFT
total cross-section is di�erent to the SM one, we revert this normalisation to maximise our
EFT sensitivity.

Fig. 3.7 displays a comparison between our theory predictions and the experimental data.
The measurement extends up to values of the dilepton invariant mass of meµ ƒ 1.5 TeV. Here
one can observe that the inclusion of higher-order QCD and gluon-initiated contributions is
essential to achieve a good agreement with experimental data, which turns out to be similarly
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Happy to discuss a  
common strategy with  
experimental groups!



LHC RUN 2
Several new measurements in the EW sector

Handicaps: we can only use 1 measurement per analysis, sometimes even 
incurring in double counting of events, we don’t always get the distribution 
that we would like  


(One) Solution: Accounting for correlations between different distribution of 
the same channel ->  available for the Higgs sector, also for the EW? If not, 
when?


(Another) Solution: keep all the differential information, without projecting 
into variables  (more on this later) 



LHC RUN 2
What about HEFT? …  
Some recent results, but all quite cryptic

Measurements of HVV and HHVV can be mapped to HEFTs “a” and “b” couplings. 
So far no results on KV and K2V from the EW sector but could be an interesting 
challenge for Run-3



LHC Run-3 

2023: The advent of Machine Learning, Quantum computing, and the 
fits of the future. 


It’s time to define new strategies for the future data-taking and a 
analysis. One strong proposal is the one of unbinned cross sections 
some multidifferential objects that conserve information and 
correlations of all kinematic variables

The experiments have been done this for a long time, 

see P. Vischia’s talk!



LHC Run-3 
1. Define an unbinned likelihood 


2. Parametrise an unbinned cross section as a likelihood ratio


3. An infinitely large sample, can be described by a neural network (NN)

Nikhef-2022-015

Unbinned multivariate observables for global SMEFT analyses

from machine learning

Raquel Gomez Ambrosio,1 Jaco ter Hoeve,2,3 Maeve Madigan,4 Juan Rojo,2,3 and Veronica Sanz5,6

1 Dipartimento di Fisica “G. Occhialini”, Universita degli Studi di Milano-Bicocca,

and INFN, Sezione di Milano Bicocca, Piazza della Scienza 3, I – 20126 Milano, Italy
2Department of Physics and Astronomy, VU Amsterdam, 1081HV Amsterdam, The Netherlands

3Nikhef Theory Group, Science Park 105, 1098 XG Amsterdam, The Netherlands
4DAMTP, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK

5 Instituto de F́ısica Corpuscular (IFIC), Universidad de Valencia-CSIC, E-46980 Valencia, Spain
6 Department of Physics and Astronomy, University of Sussex, Brighton BN1 9QH, UK

Abstract

Theoretical interpretations of particle physics data, such as the determination of the Wilson coe�cients
of the Standard Model E↵ective Field Theory (SMEFT), often involve the inference of multiple paramet-
ers from a global dataset. Optimizing such interpretations requires the identification of observables that
exhibit the highest possible sensitivity to the underlying theory parameters. In this work we develop a
flexible open source framework, ML4EFT, enabling the integration of unbinned multivariate observables
into global SMEFT fits. As compared to traditional measurements, such observables enhance the sensitivity
to the theory parameters by preventing the information loss incurred when binning in a subset of final-
state kinematic variables. Our strategy combines machine learning regression and classification techniques
to parameterize high-dimensional likelihood ratios, using the Monte Carlo replica method to estimate and
propagate methodological uncertainties. As a proof of concept we construct unbinned multivariate observ-
ables for top-quark pair and Higgs+Z production at the LHC, demonstrate their impact on the SMEFT
parameter space as compared to binned measurements, and study the improved constraints associated to
multivariate inputs. Since the number of neural networks to be trained scales quadratically with the number
of parameters and can be fully parallelized, the ML4EFT framework is well-suited to construct unbinned
multivariate observables which depend on up to tens of EFT coe�cients, as required in global fits.
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https://arxiv.org/abs/2211.02058

and generated at linear order, O
�
⇤�2

�
, in the EFT expansion with all Wilson coe�cients set to zero except

for the j-th one, which we denote by c(tr)j . For such model configuration, the EFT cross-section ratio can be
parametrized as

r�(x, c(tr)j ) = 1 + c(tr)j NN(j)(x) , (3.12)

where only the individual coe�cient c(tr)j has survived the sum in Eq. (3.4) since all other EFT parameters
are switched o↵ by construction. Comparing Eq. (3.12) and Eq. (3.4) we see that in the large sample limit

NN(j)(x) ! r(j)� (x) . (3.13)

In practice, this relation will only be met with a certain finite accuracy due to statistical fluctuations in the
finite training sets. This limitation is especially relevant in phase space regions where the cross-section is
suppressed, such as in the tails of invariant mass distributions, and indicates that it is important to account
for these methodological uncertainties associated to the training procedure. By means of the Monte Carlo
replica method one can estimate and propagate these uncertainties first to the parametrization of the EFT
ratio r� and then to the associated limits on the Wilson coe�cients.

Concerning the training of the EFT quadratic cross-section ratios r(j,k)� , we follow the same strategy as
in the linear case, except that now we construct the EFT dataset at quadratic order without any linear
contributions. By omitting the linear term, we reduce the learning problem at the quadratic level to a linear
one. Specifically, we generate events at pure O

�
⇤�4

�
level, without the interference (linear) contributions,

in the EFT by switching o↵ all Wilson coe�cients except two of them, denoted by c(tr)j and c(tr)k ,

Deft(c = (0, . . . , 0, c(tr)j , 0, . . . , 0, c(tr)k , 0, . . .) , (3.14)

and hence the cross-section ratio takes the form

r�(x, c(tr)j , c(tr)k ) = 1 + c(tr)j c(tr)k NN(j,k)(x) , (3.15)

where only purely quadratic terms with c(tr)j and c(tr)k have survived the sum. The quadratic correction
associated to a single operator, namely the j = k case, is also included in this step. By the same reasoning
as above, in the large sample limit we will have that

NN(j,k)(x) ! r(j,k)� (x) . (3.16)

We note that in the case that the Monte Carlo generator used to evaluate the theory predictions T (c)
does not allow the separate evaluation of the EFT quadratic terms, one can always subtract the linear
contribution numerically by means of the outcome of Eq. (3.13).

By repeating this procedure neft times for the linear terms and neft(neft + 1)/2 times for the quadratic
terms, one ends up with the set of functions that parametrize the EFT cross-section ratio Eq. (3.4),

{NN(j)(x)} and {NN(j,k)(x)} , j, k = 1, . . . , neft , k � j . (3.17)

The similar structure that is shared between Eq. (3.12) and Eq. (3.15) implies that parameterizing the
quadratic EFT contributions in this manner is ultimately a linear problem, i.e. redefining the product

c(tr)j c(tr)k as c̃(tr)j,k maps the quadratic learning problem back to a linear one:

r�(x, c̃(tr)j,k ) = 1 + c̃(tr)j,k NN(j,k)(x) . (3.18)

Eq. (3.17) represents the final outcome of the training procedure, namely an approximate parametrization
r̂�(x, c) of the true EFT cross-section ratio r�(x, c),

r̂�(x, c) = 1 +
neftX

j=1

NN(j)(x)cj +
neftX

j=1

neftX

k�j

NN(j,k)(x)cjck , (3.19)

valid for any point in the model parameter c, as required to evaluate the profile likelihood ratio in Eq. (2.22)
and to perform inference on the Wilson coe�cients. Below we provide technical details about how the neural
network training is carried out and how uncertainties are estimated by means of the replica method.
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The experiments have been done this for a long time, 

see P. Vischia’s talk!

(Maeve’s talk) 

https://arxiv.org/pdf/2211.02058.pdf


LHC Run-3 More details:  https://lhcfitnikhef.github.io/ML4EFT 


• Generate EFT events 
for a certain process 
(pp -> ttbar) 


• Train on the 
unprojected events 
(multi differential) 


• Main obstacle: 
systematic unc. 

https://lhcfitnikhef.github.io/ML4EFT


LHC Run-3 More details:  https://lhcfitnikhef.github.io/ML4EFT 


• Generate EFT events 
for a certain process 
(pp -> ttbar) 


• Train on the 
unprojected events 
(multi differential) 


• Main obstacle: 
systematic unc. 

Happy to discuss a  
common strategy with  
experimental groups!

https://lhcfitnikhef.github.io/ML4EFT
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Figure 5.2. Pair-wise 95% CL contours for the Wilson coe�cients entering top quark pair production in the dilepton
final state, see Sect. 4.3 for more details. These contours are obtained by marginalizing over the full posterior
distribution provided by Nested Sampling. We consider here neft = 5 Wilson coe�cients that can be simultaneously
constrained from inclusive top-quark pair production at the linear level in the EFT expansion. We compare the
results obtained from both binned and unbinned ML observables constructed on the (p`

¯̀
T , ⌘`) kinematic features. As

in Fig. 5.1, the black cross indicates the SM values used to generate the pseudo-data that enters the inference. The
comparison of the unbinned ML observable trained on (p`

¯̀
T , ⌘`) with its counterpart trained on the full set of nk = 18

kinematic features is displayed in Fig. 5.3.
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LHC Run-3 More details:  https://lhcfitnikhef.github.io/ML4EFT 


The unbinned object with 
all the features (ie, 
kinematic variables) can 
constrain the result largely 
compared with an 
analysis based on only 2 
projections
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The unbinned object with 
all the features (ie, 
kinematic variables) can 
constrain the result largely 
compared with an 
analysis based on only 2 
projections



PART III 
Other routes: the HiggsFlare



Assuming the global fit has been taken care of…
We can also have some fun

The Higgsflare function


ℒHEFT =
1
2

∂μh ∂μh + (1 + a1
h
v

+ a2 ( h
v )

2

+ a3 ( h
v )

3

+ … + an ( h
v )

n

) ∂μw+∂μw−

On the contrary to the SM(EFT), it allows vertices with a growing number 
of Higges attached to the goldstone (gauge) bosons. Whereas the SM 
stops at HHWW and the SMEFT grow in a contained manner (H4WW for 
dimension 6, H6WW for dim8, etc), the HEFT predicts as many 
independent HW vertices as we can imagine. 

ℱ(h)



The flair of Higgsflare:
Distinguishing electroweak EFTs with WLWL ! n⇥ h

Raquel Gómez-Ambrosio,
Dipartimento di Fisica “G. Occhialini”, Università degli Studi di Milano-Bicocca,

and INFN, Sezione di Milano Bicocca, Piazza della Scienza 3, I – 20126 Milano, Italy

Felipe J. Llanes-Estrada, Alexandre Salas-Bernárdez and Juan J. Sanz-Cillero
Univ. Complutense de Madrid, Dept. Fı́sica Teórica and IPARCOS, Plaza de las Ciencias 1, 28040 Madrid, Spain
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The electroweak symmetry-breaking sector is one of the most promising and uncharted parts of the Standard
Model; but it seems likely that new electroweak physics may be out of reach of the present accelerator e�ort
and the hope is to observe small deviations from the SM. Given that, E�ective Field Theory becomes the logic
method to use, and SMEFT has become the standard. However, the most general theory with the known particle
content is HEFT, and whether SMEFT su�ces should be investigated in future experimental e�orts. Building
on investigations by other groups that established geometric criteria to distinguish SMEFT from HEFT (useful
for theorists examining specific beyond-SM completions), we seek more phenomenological understanding and
present an analogous discussion aimed at a broader audience.

We discuss various aspects of (multi-) Higgs boson production from longitudinal electroweak gauge bosons
WLWL ! n⇥ h in the TeV region as the necessary information to characterise the Flare function, F(h), that
determines whether SMEFT or HEFT is needed. We also present tree-level amplitudes including contact and
exchange channels, as well as a short discussion on accessing F from the statistical limit of many bosons. We
also discuss the status of the coe�cients of the series expansion of F(h), its validity, whether its complex-h
extension can be used to predict or not a tell-tale zero, and how they relate to the dimension-6 and -8 SMEFT
operators in the electroweak sector. We derive a set of new correlations among BSM corrections to the HEFT
coe�cients that help decide, from experimental data, whether we have a viable SMEFT. This analysis can be
useful for machines beyond the LHC that could address the challenging final state with several Higgs bosons.
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which, in HEFT coordinates, becomes6

VSM(h) =
m2

h

2

✓
h2 +

h3

v
+

h4

4v2

◆
, (84)

with v2 = �µ2/� and m2

h
= 2|µ|2.

• The typical potential with the correlations obtained there in Appendix C will need to have an expansion which, up to
O(⇤�2) in SMEFT needs to have the form

V (h) =
m2

h

2


h2 +

h3

v
(1 + ✏) +

h4

v2

✓
1

4
+

3

2
✏

◆
+

3✏

4

h5

v3
+

✏

8

h6

v4

�
. (85)

It is possible to see that including the custodial-invariant SMEFT operator without derivatives, OH , in Eq. (18) one
gets the potential,

VSMEFT(H) = µ2H†H + �(H†H)2 �
cH
⇤2

(H†H)3 , (86)

which reproduces the structure of the coe�cients in Eq. (85). By expanding H around its minimum, the SMEFT poten-
tial in HEFT coordinates, finally produces the structure in Eq. (85) with m2

h
= �2µ2 (1 + 3✏/4) and 2h|H|

2
i =

v2 = v2
0
(1� 3✏/4), where we made use of the lowest order vev v2

0
= �µ2/� and the O(⇤�2) correction ✏ =

�2cHv4/m2

h
⇤2 = µ2cH/(�2⇤2). Notice that, for sake of clarity in the illustration, here we have taken cH⇤ = 0,

so there is no Higgs field renormalization. (Notice also that treating only terms in the potential, i.e. non-derivative
couplings implies, up to a constant shift, h = h1)

4. Example of potentials V where SMEFT is not applicable

An example of a potential which can not be written as a SMEFT is

V (H) = VSM(H) +
"

H†H
(87)

with " a constant small enough so as to avoid unsettling the potential away from h = 0 by a finite fraction of v now there is no
symmetric O(4) point where the function is analytic, there is a divergence at the origin. Consistently with the symmetric-point
criterion, SMEFT cannot be used: this model does not reproduce Eq. (85).

V. ww ! n⇥ h FOR ALL n IN HEFT AS THE TELLTALE PROCESS:
EXTRACTION OF F(h) EXPANSION COEFFICIENTS

In this section we will indicate how to extract the coe�cients of the flare function F in a process where n Higgses are
produced in the final state.

h1

hn

h2

... = �
n!an

2vn
s

FIG. 2: The ai coe�cients of the flare function F control the contact piece of !! ! nh processes. A large number n of
Higgs bosons in the final state would appear as a flare of them in the detector read out, whence the nickname of the function.

First we start by noticing that the measurement of the !+!�
! h total cross section gives us information the value of the

first nontrivial coe�cient of F(h), a1 = 2a. The value of a is well constrained and hence we move on to identify the processes
where the subsequent coe�cients of the flare function can be measured.

Generalizing to n > 1 Higgs bosons in the final state, the contributions to the amplitude will come from the contact diagram
and the t-channel and u-channel diagrams. The contact diagram will give a contribution of n!san/(2vn) whereas the t/u-
channel will produce a string proportional to all the coe�cients of F(h), am, for 1  m  n� 1. So that, for generic n, the

6 In this case, the correlations of table III in appendix C below are trivially satisfied, because the variables there defined �v3 = �v4 = . . . 0 all vanish.
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amplitude will take the form

T!!!n⇥h =
s

vn

p(n)X

i=1

0

@ i(q1, q2, {pk})

|IP[n]i|Y

j=1

aIP[n]j
i

1

A , (88)

where  i(q1, q2, {pk}) are functions depending on all four-momenta involved in the process (the two Goldstone bosons having
momenta q1 and q2 and the k-th Higgs boson with momentum pk) which will be made explicit below. These functions
contribute to the angular integration used to obtain the total cross section of the process. The symbol IP[n] represents the
integer partitions of n and it is a collection of p(n) vectors with length |IP[n]i| each, and components IP[n]j

i
. For example,

for n = 4 (see Eq. (94) given shortly), IP[4] = {{4}, {3, 1}, {2, 2}, {2, 1, 1}, {1, 1, 1, 1}} and hence p(4) = 4, |IP[4]i| =
{1, 2, 2, 3, 4} and IP[4]1

2
= 3. In that case the amplitude takes the form

T!!!4⇥h =
s

v4
�
4!a4 + a3a1 2(q1, q2, {pk}) + a2

2
 3(q1, q2, {pk}) + a4

1
 4(q1, q2, {pk})

�
. (89)

The strategy is to fit to data each an with increasing n starting form the one-Higgs boson production, then fit two-Higgs
boson production, etc. We have developed a small program for the computation of the amplitudes T!!!n⇥h that can be
provided by the authors on request. We present in the next subsection V A the amplitudes for the production of one, two, three
and four Higgs bosons.

A. Amplitudes of !! ! n⇥ h with n = 1, 2, 3, 4

Formally, the amplitude !! ! h with the LO HEFT Lagrangian in Eq. (3) is given by

T!!!h = �
a1s

2v
. (90)

There is no on-shell cross section associated to this amplitude (because of the impossibility to satisfy four-momentum con-
servation with three on-shell massless particles). The amplitude cannot be used o�-shell because the Lagrangian of the EFT
has been constructed on-shell. Therefore we move on and quote the amplitude with two Higgs bosons in the final state, that is
simply [26]

T!!!hh =
s

v2
(a2 � b) =

s

v2

✓
a2
1

4
� a2

◆
, (91)

but it will be useful to introduce some notation to systematize what follows and give it in a more involved way:

T!!!hh =
s

v2

✓
a2
1

((z1 � 2)f1 + (z2 � 2)f2 + 2)

4
� a2

◆
(92)

where we define, in the rest frame, the three-momentum fractions fi ⌘ ||~pi||/
p
s (s = 4||~q1||2) for each Higgs boson; the

angular functions zi ⌘ 2 sin2(✓i/2) with ✓i being the angle between the i-th Higgs boson and the first ! Goldstone boson
momenta, ~q1 (that is, z1 = 1� cos ✓, z2 = 1 + cos ✓ as usual in a two-body problem with t and u channels). We also define
zij ⌘ 2 sin2(✓ij/2), ✓ij being the angle between the i-th and j-th Higgs bosons.

With this notation, the tree-level amplitude with a larger number of Higgs bosons can be obtained (by automated means);
the one with three Higgs bosons in the final state is relatively manageable even when given in full,

T!!!hhh = �
s

8v3

 
a31

h
4f1f

2

3

✓
z23(f1z23 � 1)

f3(z3 � 2f1z23) + f2z2
+

z13(f1z13 � 1)

f1(z1 � 2f3z13) + f3z3

◆
+

+ 2f3

✓
f1

✓
z23 � 2f2z23

�2f1f3z23 + f2z2 + f3z3
+

z13 � 2f1z13
�2f1f3z13 + f1z1 + f3z3

+ z13 + z23

◆
+ 3(z3 � 2)

◆
+

+
2f1f2z12(2f1(f2z12 � 1)� 2f2 + 1)

f1(z1 � 2f2z12) + f2z2
+ 2f1(f2z12 + 3z1 � 6) + 6f2z2 � 12f2 + 9

i
+

+ 4a1a2
hf2

1

�
2z1(�2f2z12 + f3(z13 + z23)� 3)� 4f2z12(f3(z13 + z23)� 2) + 3z2

1

�

2f1f2z12 � f1z1 � f2z2
+

+
2f1f2(�2f2z12(z2 + 1) + z2(f3(z13 + z23) + 3z1 � 3) + z12) + 3f2

2
z2
2

2f1f2z12 � f1z1 � f2z2
+ 6(f2 + f3 � 1)�

�
2f1f3z23(2f3(f1z23 � 1)� 2f2 + 1)

f3(z3 � 2f1z23) + f2z2
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i
+ 24a3

!
. (93)

Look at scattering of Goldstone bosons 
(comparable to VBF at LHC) to n Higgses


(Double H production, Triple H production etc) 

https://arxiv.org/abs/2204.01763


Measurements of HWW and HHWW
Whereas the HWW and HHWW vertices are set in stone for the SM, 
and strongly related in the SMEFT, they are completely independent in 
the HiggsFlare function 25

FIG. 3: SMEFT at order 1/⇤2 predicts the correlation a2 = 2a1 � 3 from the first column in Table I, which is plotted against
the current 95% confidence intervals for these two HEFT parameters [67, 68].

TABLE II: We input the 95% confidence-level experimental bounds a1/2 = a 2 [0.97, 1.09] [67] and, for the middle column,
a2 = b = 2V 2 [�0.43, 2.56] [69] (see the second erratum), by the ATLAS collaboration (top row) or the CMS collaboration (bottom
row) interval of a2 = b = 2V 2 [�0.1, 2.2] [68]. With them we have calculated and show here the expected corresponding 95% CL

intervals for several WLWL ⇠ !! ! nh coupling, an, employing the relations of Table I. Violations of the intervals in the first column
would sow doubt on the SMEFT adequacy at O(⇤�2); surpassing any in the third column, on its perturbativity; and those of the middle
column would void SMEFT of much significance as an EFT. They can be further tightened with improved experimental data for 2V .

Consistent SMEFT Consistent SMEFT Perturbativity of

range at order ⇤�2 range at order ⇤�4 ⇤�4 SMEFT

�a2 2 [�0.12, 0.36] ATLAS ATLAS

a3 2 [�0.08, 0.24] a3 2 [�4.1, 4.0] a3 2 [�3.1, 1.7]

a4 2 [�0.02, 0.06] a4 2 [�4.2, 3.9] a4 2 [�3.3, 1.5]

a5 = 0 a5 2 [�1.9, 1.8] a5 2 [�1.5, 0.6]

a6 = 0 a6 = a5 a6 = a5

CMS CMS

a3 2 [�3.2, 3.0] a3 2 [�3.1, 1.7]

a4 2 [�3.3, 3.0] a4 2 [�3.3, 1.5]

a5 2 [�1.5, 1.3] a5 2 [�1.5, 0.6]

a6 = a5 a6 = a5

min(5a�
1
,�5a+

1
)  �a2  max(�5a�

1
, 5a+

1
). Since e�ectively the bounds just depend on the allowed values for a1 we are

obtaining the same outcomes for ATLAS and CMS in the third column.

B. When Schwarz’s Lemma guarantees a function’s zero

In this subsection we examine and adapt a known result from complex-variable analysis that guarantees the existence of a
zero of a complex function: in the case of F(h) this would be an O(4) fixed point candidate around which SMEFT could be
built.

The information that we would eventually need to have at hand to exploit the theorem would be a number of coe�cients of
the Taylor series, depending on any future accelerators energy reach (subsec. V). To avoid too large a mathematical digression,
Schwarz’s Lemma and two of its corollaries are detailed in Appendix A. What can guarantee a zero ofF is the second corollary.
The needed hypotheses are as follows:

• First, the function F(h) (extended to be a complex function of a complex h argument, in units of v throughout this
whole section) needs to be analytic inside a disc of radius |h| = R around the vacuum h = 0. This disk has to be large
enough to reach the possible symmetric point (i.e., h = h⇤ or, in SMEFT, |H| = 0) from the observed vacuum (i.e.,



Measurements of HWW and HHWW

If a experimental analysis of 
KV and K2V gives a result 
incompatible with the red 
line, we could just rule out 

the SMEFT completely, and 
conclude a new structure 
for the EWSB mechanism

Work in progress with JJ. Sanz-Cillero, R.Delgado-
Lopez, A. Salas-Bernardez, J. Martinez-Matin 



Conclusions….

• Lots of experimental analyses have been performed in Runs 1 and 2, 
but the amount of data that is “usable” for pheno is rather limited


• Machine learning applications are in their infancy and fun to play with. 
They might lead to a Higgsplosion of datapoints for future fits


• Still, it is fun to look at the heart of the theory, and explore the 
possibilities that different Lagrangians can offer to us



Thank you! 


