

Lucia Anna Tarasovičová **On behalf of ALICE, CMS, and ATLAS collaborations** Westfälische Wilhelms-Universität, Münster LHCP, 22.05.2023

From large to small systems

Pb—Pb

Phys. Lett. B 724 (2013) 213

pp

JHEP 1009:091,2010

Phys. Rev. Lett. 123, 212002 (2019)

Correlation functions

Balance function

Measure of balancing charges

$$R_2^{\alpha\beta} = \frac{\rho_2^{\alpha\beta}}{\rho_1^{\alpha}\rho_1^{\beta}} - 1$$

$$B^{\alpha\beta} = \frac{1}{2} \left\{ \rho_1^{\beta^-} \left[R_2^{\alpha^+\beta^-} - R_2^{\alpha^-\beta^-} \right] + \rho_1^{\beta^+} \left[R_2^{\alpha^-\beta^+} - R_2^{\alpha^+\beta^+} \right] \right\}$$

ALICE

- Measure of balancing charges
- $BF_{\pi\pi}$ narrow in central collision **coalescence**?

Balance function: Identified hadrons

- Measure of balancing charges
- \bullet BF_{pp} wider than acceptance, no dependence on multiplicity • Early stage production?

Balance function: Identified hadrons

• Pairing fractions not dependent on centrality, except $I^{\pi\pi} \Rightarrow$ quantitative characterisation of the hadronisation of the QGP

Phys.Lett.B 833 (2022) 137338

Balance function: Charged hadrons

Narrowing of width of BF towards central collisions Radial flow, late particle production (coalescence) Similar behaviour in p—Pb collisions

VS

VS

Balance function: Charged hadrons

- Similar trends in p—Pb and Pb—Pb collisions

Consistent with the delayed hadronisation, support collectivity in p—Pb collisions [•] Models cannot describe data perfectly, though provide better description in $\Delta \phi$

G₂

 $\Delta \eta$ CI - different for all three systems • Pb—Pb - increase 24% - viscous effects of long-lived QGP with small η/s

\mathbf{G}_2

 $\left[\frac{\int_{\Omega} p_{\mathrm{T},1} p_{\mathrm{T},2} \rho_2(p_1, p_2) \mathrm{d} p_{\mathrm{T},1} \mathrm{d} p_{\mathrm{T},2}}{\int_{\Omega} \rho_1(p_1) \mathrm{d} p_{\mathrm{T},1} \int_{\Omega} \rho_2(p_2) \mathrm{d} p_{\mathrm{T},2}} - \langle p_{\mathrm{T},1} \rangle \langle p_{\mathrm{T},2} \rangle \right]$ $G_2 = \frac{1}{\langle p_{\mathrm{T},1} \rangle \langle p_{\mathrm{T},2} \rangle} \, \, \mathbf{I}$

- $\Delta \eta$ CI - different for all three systems
 - Pb—Pb increase 24% viscous effects of long-lived QGP with small η/s
 - pp slight decrease, p—Pb slight increase
 - Too small for viscous forces to equilibrate?
 - Different explanations?

$\mathbf{G2}$

- $\Delta \eta$ CI different for all three systems
- Pb—Pb increase 24% viscous effects of long-lived QGP with small η/s
- pp slight decrease, p—Pb slight increase
 - Too small for viscous forces to equilibrate?
 - Different explanations
 - Models without collective effects do not describe data

Anisotropic flow

Initial spatial anisotropy

Final anisotropy in momentum space

medium (low $p_{\rm T}$)

- Reflects the conversion of the initial-state spatial anisotropy into final-state anisotropies in momentum space
- Anisotropy in distribution of final-state particles:

$$\frac{\mathrm{d}N}{\mathrm{d}\varphi} \propto 1 + 2\sum_{n=1}^{\infty} v_n \cos n(\varphi - \Psi_n)$$
$$v_n = \langle \cos(n(\varphi - \psi_n)) \rangle$$

- Initial conditions and transport properties of the created
 - Initial geometry affects energy loss of hard hadrons (high $p_{\rm T}$)

L.A. Tarasovičová, WWU

- First measurement of Fourier coefficients up to $p_{\rm T}$ = 200 GeV/c
- Compatible with previous measurements
 - Decreased uncertainties

Non-zero v_2 at high p_T

Increasing towards semicentral collisions

• Hard hadrons influenced by initial geometry

v_n up to high p_T in Pb—Pb

- Non-zero v_2 at high p_T
 - Increasing towards semicentral collisions
 - Hard hadrons influenced by initial geometry
- v_3 at high p_T compatible with zero
 - Hard hadrons not influenced by initial fluctuations

Fourier coefficients of dijets measured with two-particle correlations

v_n of dijets (Pb—Pb)

- Fourier coefficients of dijets measured with two-particle correlations
- Non-zero V_2 :
 - More jets observed coplanar with event plane
 - $^{\circ}$ Less energy loss \rightarrow higher chance to pass selection criteria

- Fourier coefficients of dijets measured with two-particle correlations
- Non-zero V_2 :
 - More jets observed coplanar with event plane
 - Less energy loss \rightarrow higher chance to pass selection criteria
- v_3 , v_4 compatible with zero:

• The fluctuations in the initial state **do not impact** the azimuthal distributions of dijets

v₂ of particles in jets (p–Pb, Pb–Pb)

• Non-zero jet v_2 in p—Pb and Pb—Pb collisions • Smaller magnitude than inclusive V_2

- No dependence on p_{T}^{assoc}
 - At high $p_{\rm T}$ similar magnitude as in Pb—Pb
- v_2 driven by the non-equilibrium anisotropic parton escape mechanism

v2 of particles in jets (pp)

• h^{UE} separated by $\Delta \eta > 1$ from jet with $p_T > 15$ GeV/c • h^J constituents of jets

• Study of influence of jets on inclusive v_2 and jet v_2 - origin of v_n in pp?

11

v2 of particles in jets (pp)

No multiplicity dependence

• Presence of a jet with $p_T > 15$ GeV/c does not influence the v_2 of h^{UE}

L.A. Tarasovičová, WWU

11

v2 of particles in jets (pp)

- - No multiplicity dependence
- v_2 of h^J compatible with zero

• Presence of a jet with $p_T > 15$ GeV/c does not influence the v_2 of h^{UE}

• The inclusive v_2 is not driven by jet fragmentation, but rather by bulk The collective system is too small to influence jets - no energy loss

L.A. Tarasovičová, WWU

11

VS •

Limit of collectivity in small systems

ALI-PREL-538420

Long-range two-particle correlations measured up to the smallest multiplicities

VS

Limit of collectivity in small systems

Integrated ridge yield as a function of multiplicity calculated with great precision

• At $N_{ch} > 30$ compatible with CMS measurement

Limit of collectivity in small systems

Integrated ridge yield as a function of multiplicity calculated with great precision

• At $N_{ch} > 30$ compatible with CMS measurement • At lower multiplicities - increased precision

Limit of collectivity in small systems

Integrated ridge yield as a function of multiplicity calculated with great precision

VS 🔷

• Comparison with e^+e^- collisions • $Y^{pp} > Y^{ee}$ for $\langle N_{ch} \rangle \approx 15$ with 3σ First quantitative comparison between pp and e^+e^- collisions New insight to processes contributing to the long-range ridge

Limit of collectivity in small systems

• Large systems

- Deconfined medium with small η/s
- Late production of pions via coalescence, hint of early production of protons • v_2 of jets and jet particles induced by path length dependent energy loss

• Small systems

- Collectivity supported by narrowing of the peak width of BF and G_2 correlation functions of low $p_{\rm T}$ hadrons and non-zero v_2
 - Viscous forces do not have time to equilibrate the system
- v_2 in pp collisions not driven and not influenced by jet fragmentation
- Significant ridge yield in pp down to $\langle N_{ch} \rangle \approx 10$, larger than in e^+e^-

Thank you for your attention!

L.A. Tarasovičová, WWU

More results

PID flow in Pb-Pb

First $p_{\rm T}$ -differential v_2 measurements using four-particle cumulants for identified particles

- In the intermediate p_T range, v_2 {4}for baryons is larger than that for mesons by about 50%
- $F(v_2)$ an apparent splitting between baryons and mesons for centrality above
- $30\% \Rightarrow$ a significant role for final-state interactions in developing this observable

Backup

