RECENT OPEN HEAVY FLAVOR RESULTS

M. Csanád (Eötvös U) for ALICE, ATLAS, CMS, LHCb
HEAVY FLAVOR PROBES TIME EVOLUTION

- Special role of heavy flavor: negligible thermal production (mass > temperature), Brownian motion
- From production at less than 0.1 fm/c until QGP lifetime: experience whole evolution
- Initial production:
 - pQCD, shadowing, pre-equilibrium effects, glasma, electromagnetic field, vorticity
- Dynamics in QGP
 - Heavy quark interaction, transport, thermalization
- Hadronization
 - Coalescence, fragmentation, rescattering
- Main heavy flavor observables:
 - Baryon/meson ratios: hadronization
 - R_{AA}: interaction, energy loss
 - v_2: coupling, thermalization

from Santosh Kumar Das, HP 2023
PROMPT $Λ_C^+ / D^0$ RATIO AT 5.02 TEV

- First measurement of prompt $Λ_C^+ / D^0$ at forward rapidities in PbPb [LHCb, arXiv:2210.06939]
 - Enhancement at intermediate p_T, PYTHIA8+CR compatible, Statistical hadronization (RQM+Frag) above data

 - Possibly due to interplay of coalescence and radial flow, or hadronic rescattering for PbPb

- $(Λ_C^+ + Λ_C^-) / (D^0 + D^0)$ consistent in pp and PbPb [CMS-PAS-HIN-21-004]
 - No significant contribution from coalescence?
Non-prompt D_s and D^0 production measured in PbPb by ALICE

Compared to prompt results and model calculations

Larger non-prompt R_{AA} than prompt R_{AA}
 - For both non-prompt D_s and D^0
 - Larger impact of dead-cone effect for beauty

Hints of larger D_s/D^0 yields in AA than in pp
 - Coalescence production in a strangeness-rich environment

ALICE paper: arXiv:2204.10386

Further results in recent ALICE publications
 - JHEP 12 (2022) 126, JHEP 01 (2022) 174, etc.
CHARM QUARK HADRONIZATION IN PPB AT 8.16 TEV

- First conclusive measurement of Λ_c/D^0 vs multiplicity in pPb (note similar ALICE preliminary for QM22)
 - Different trend compared to strange sector: smaller dependence

- Extending the system, p_T, and centrality dependence
 - Λ_c/D^0 in pPb and MB PbPb consistent at intermediate momenta
 - High momenta: MB and central PbPb approach the ratio from e^+e^-: no coalescence
PROMPT D^0 PRODUCTION IN PPB AT 8.16 TEV

- Forward: suppression consistent with 5.02 TeV result, with nPDF and CGC
- Backward: data partly below nPDF at high p_T
- Room for additional effects at backward rapidity

LHCb paper: arXiv:2205.03936
D⁰-TAGGED JET R⁰AA IN PbPb

- Nuclear modification of D⁰-tagged jets in PbPb measured by ALICE
- Compared with single-particle D⁰ and inclusive-jets
- Larger R⁰AA for D⁰-jets than single-particle D⁰
 - in common p_T range
 - hadron-to-parton and jet-to-parton p_T scales differ
- Larger R⁰AA for D⁰-jets than inclusive jets
 - Here quark/gluon jet ratio and parton fragmentation differ

Results:
ALI-PREL-506534

![Graph showing nuclear modification of D⁰-tagged jets](https://alice-figure.web.cern.ch/node/22030)
B-JETS IN PBPB COLLISIONS

- B-jets: different from inclusive jets due to quark mass
 - Medium-induced gluon radiation suppressed; lose smaller amount energy than gluon jets due to color factor

- B-jet ID: jets with muonic b-decays; template fit of muon momentum relative to jet axis
 - R_{AA} decreased for more central events; larger for b-jets than for light-jets
 - Reason: different gluon fraction – b-mass subdominant at high p_T

ATLAS

- Pb+Pb 2018, 1.4(1.7) nb$^{-1}$
- pp 2017, 260 pb$^{-1}$
- $\sqrt{s_{NN}} = 5.02$ TeV, Centrality 0-20%

ATLAS

- Pb+Pb 2018, 1.4(1.7) nb$^{-1}$
- pp 2017, 260 pb$^{-1}$
- $\sqrt{s_{NN}} = 5.02$ TeV, Centrality 50-80%

May 23, 2023

M. CSANÁD @ LHCP
Jet shape: Measure of charged particle p_T distribution w.r.t. jet axis:

\[P(\Delta r) = \frac{1}{\Delta r_b - \Delta r_a} \frac{1}{N_{\text{jet}}} \sum_{\text{jets}} \sum_{\text{trk} \in (\Delta r_a, \Delta r_b)} p_T^{\text{trk}} \]

\[\rho(\Delta r) = \frac{P(\Delta r)}{\sum_{\text{jets}} \sum_{\text{trk} \in (\Delta r<1)} p_T^{\text{trk}}} \]

- Depletion of p_T at small Δr from jet axis
 - Already present in pp, consistent with a dead-cone
 - Quantitative measurement of dead-cone effect for b-jets?

- QGP modifies energy flow around b-jets
 - Transfer of p_T from small to large radial distances?

- CMS paper: arXiv:2210.08547
BOTTOM QUARK R_{AA} IN PBPB

- Electrons from b-decays measured by ALICE [arXiv:2211.13985]
- Consistent with models of b-quark energy loss
- Similar R_{AA} of electrons from bottom and charm
 - C.f.: mass ordering or differences seen previously by PHENIX [2203.17058], STAR [2111.14615] and ATLAS [2109.00411]

Graphs

- **Left Graph**: ALICE, R_{AA} of electrons from b-decays in 0-10% Pb-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV.
- **Right Graph**: ALICE, R_{AA} of electrons from b-decays in 0-10% Pb-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV.

May 23, 2023

M. CSANÁD @ LHCP

arXiv:2211.13985
EXPLORE ENERGY LOSS AND QGP EXPANSION: R_{AA} AND v_2

- Constraining spatial diffusion coefficient
 - Different transport models for E-loss & hadronization
 - Simultaneous description: $1.5 < 2\pi D_s T_c < 4.5$
 - HF probes becoming powerful tomography tools

- Measurement of R_{AA} and v_2 for c and b
 - Mass splitting of v_2 at low p_T, convergence at high p_T
 - Charm D_s: 2.23 (bottom: 2.79); in line with ALICE

ALICE

ALI-DER-499016
NON-PROMPT D⁰ ELLIPTIC FLOW IN PbPb

- Non-prompt D⁰ ν₂ measured in 30-50% PbPb by ALICE, compared with prompt D⁰
- Non-zero non-prompt flow observed, although smaller than prompt and larger uncertainties
- LIDO model compatible with current and earlier data on b(→ c) → e

https://alice-figure.web.cern.ch/node/21498

Baryon-meson ratios
Nuclear modification
Flow
PROMPT AND NON-PROMPT HEAVY FLAVOR V_2 AND V_3

- Prompt and non-prompt D^0: DCA separation
- Charm v_2 and v_3: affected by flow and energy loss characteristics
- Bottom: less flow, more resistant to collective effects, but still path-length dependent energy loss

![Graph showing v_2 and v_3 for different centrality classes]
HEAVY FLAVOR FLOW HIERARCHY

- Bridging heavy flavor flow measurements in small and large systems
- Clear mass hierarchy: heavier particles exhibit less flow in PbPb and in high-multiplicity pPb as well
 - h^\pm, D^0, J/ψ, $b \to D^0$, $b \to J/\psi$, $Y(1S)$
- Question: open/closed b flow as well?

https://boundino.github.io/hinHFplot/
SUMMARY

- Many HF observables measured at LHC
 - Baryon/meson ratios (Λ_c/D^0)
 - Role of coalescence
 - Suppression (R_{AA})
 - D- and b-tagged jets measured
 - Understanding energy loss and fragmentation
 - Azimuthal anisotropy
 - Non-prompt D^0 v_2 observed
 - Heavy flavor v_2 and v_3: even for bottom
 - Clear heavy flavor flow hierarchy established

THANK YOU FOR YOUR ATTENTION!
PROMPT Λ_C^+/D^0 RATIO AT 5.02 TEV WITH LHCB

- First measurement of prompt Λ_C^+/D^0 at forward rapidities in PbPb [arXiv:2210.06939]
 - Flat ratio versus multiplicity and rapidity, enhancement at intermediate p_T
- Pythia8 + color reconnection: compatible with the data within 3σ
- Statistical Hadronization Model (RQM+Frag): above the data
- Need better understanding of charm hadronization
Λ⁺/D⁰ RATIO MEASURED BY ALICE

- **Λ⁺/D⁰** ratio (and individual yields) measured in PbPb [ALICE, arXiv:2112.08156]
 - Enhanced ratio in PbPb compared to pp at intermediate p_T
 - Although integrated ratios compatible in PbPb and pp
 - Possibly due to interplay of coalescence and radial flow, or hadronic rescattering for PbPb

- Models capture the trend of the data
 - Statistical hadronization models extended to charm hadron production
 - Models including hadronization via coalescence

![Graphs showing ALICE data for Λ⁺/D⁰ ratio in Pb-Pb collisions compared to pp collisions.](image-url)
CHARM QUARK HADRONIZATION IN PP AND AA WITH CMS

- PYTHIA+CR describes \(\frac{\Lambda_c^+ + \Lambda_c^-}{D^0 + \overline{D^0}} \) at \(p_T < 10 \) GeV in pp, similar to models
 - Containing decays of excited charm baryons; involving coalescence and fragmentation

- New results extend the \(p_T \) and centrality reach in PbPb
 - Ratio in pp and PbPb consistent: no significant contribution from coalescence
HEAVY FLAVOR HADRONIZATION IN PP WITH ALICE

- Charm baryon/meson ratios partially explained by models with modified hadronization mechanism

- Λ_C^+/D^0: Pythia Monash underestimates results, models with baryon enhancement work qualitatively
 - Ingredients: color reconnection, feed-down from unobserved charm baryons or coalescence (recombination)

- D^0 non-prompt fraction $f_{\text{non-prompt}}$: slight increase with p_T, no multiplicity dependence
 - Important test for hadronization models in HF sectors

Figure:

- Λ_C^+/D^0 vs. p_T for ALICE pp, $\sqrt{s} = 5.02$ TeV, $|y| < 0.5$
- D^0 meson $|\eta| < 0.5$
- $D^+\text{ meson }|\eta| < 0.5$
CHARM ELLIPTIC FLOW IN AA WITH CUMULANTS

- Prompt D^0 elliptic flow measured with 2- and 4-particle cumulants: $v_2\{2\}$ and $v_2\{4\}$
 - Two-step fit process: mass spectrum and cumulant fit in p_T intervals and centrality ranges

- Similar cumulant ratio as charged particles, pointing to similar origin: event-by-event fluctuations