Studying the (pre)equilibrium stage using high-p_{\perp} partons

Bithika Karmakar
Institute of Physics Belgrade

LHCP 2023
Contents

• Introduction
• High-\(p_{\perp}\) energy loss: DREENA
• Study of (pre)equilibrium stage
 - DREENA-C (Constant)
 - DREENA-B (Bjorken)
 - DREENA-A (Adaptive)
 - Generalized DREENA-A
• Summary
Quark Gluon Plasma (QGP) is created in ultrarelativistic heavy-ion collisions.

Consists of interacting quarks, antiquarks and gluons.

Low-p_{\perp}($p_{\perp} \leq 5GeV$) observables are generally used to study the medium properties.

High-p_{\perp} partons propagate through the medium. Jet looses energy by interacting with the medium.

The rare high-p_{\perp} particles can also become excellent probe of the QCD matter.
DREENA

- **Dynamical Radiative and Elastic Energy loss Approach**
 - Based on finite temperature field theory and generalized HTL approach
 - Finite size dynamical medium is considered
 - Takes into account both radiative and collisional energy losses
 - Generalized to the case of magnetic mass and running coupling

\[
\frac{E_f d^3 \sigma_q(H_Q)}{d^3 p_f^3} = \frac{E_i d^3 \sigma(Q)}{d^3 p_i^3} \otimes P(E_i \rightarrow E_f) \otimes D(Q \rightarrow H_Q),
\]

\[
\frac{E_f d^3 \sigma_u(H_Q)}{d^3 p_f^3} = \frac{E_i d^3 \sigma(Q)}{d^3 p_i^3} \otimes D(Q \rightarrow H_Q).
\]

- No fitting parameter used
• **DREENA-C**

- Constant temperature medium
- Qualitatively good agreement with data
- Joint prediction for R_{AA} and v_2
- Prediction for soft and hard probes
- Overestimates v_2 data

• **DREENA-B**

- 1D Bjorken evolution has been considered: Analytically tractable
- Now the temperature changes with proper time τ
- Reasonable agreement with data
DREENA-C and DREENA-B predictions

• No fitting parameter used
• Good agreement with data for both R_{AA} and v_2
• No v_2 puzzle
• R_{AA} is weakly sensitive to medium evolution:
 Excellent probe for jet-medium interactions
• Significant influence of medium evolution on v_2:
 Ideal probe to study medium properties

ALICE: JHEP 1811, 013; JHEP 1807, 103 (2018)
CMS: JHEP 1704, 039 (2017); PLB 776, 195 (2018)

Full = B, Dashed = C, Pb+Pb $\sqrt{s_{NN}} = 5.02$ TeV (h^\pm)
Study of initial stages using DREENA-B

- Four different initial-stage scenarios have been considered
- Same temperature profile after thermalization ($\tau_0 = 0.6fm$)
- Allows to study only the effects of different initial stages on the observables

- Smallest R_{AA} expected in case d)
High-p_{\perp} R_{AA} is notably affected by pre-equilibrium stage

ν_2 is insensitive to the pre-equilibrium stage

High-p_{\perp} ν_2 unable to differentiate different early time evolution scenarios

ALICE: JHEP 1807, 103 (2018)
ATLAS: EPJC 78, 997 (2018)
CMS: PLB 776, 195 (2018)

Red = FS, Blue = Linear, Orange = Constant, Green = Divergent
DREENA-A (Adaptive)

D. Zigic, I. Salom, J. Auvinen, P. Huovinen and M. Djordjevic, Front. in Phys. 10 (2022) 957019

- Includes arbitrary temperature profile as input
- Allows to extract bulk medium properties
- Preserves all the dynamical energy loss model properties
- Now, the medium temperature depends on the position of the parton
 1. R_{AA} along a single trajectory is calculated
 2. It is averaged over the trajectories with same direction angle ϕ
 3. Then it is integrated over the angle.
Are high-p_\perp observables sensitive to different T profiles?

D. Zigic, I. Salom, J. Auvinen, P. Huovinen and M. Djordjevic, Front. in Phys. 10 (2022) 957019

Glauber
\[\tau_0 = 1\, fm ; \text{No FS} \]

EKRT
\[\tau_0 = 0.2\, fm \]

TRENT\(\text{To} \)
\[\tau_0 = 1.16\, fm; \text{FS} \]

Pb + Pb, (30-40)% centrality

Agrees well with low-p_\perp data
EKRT initializations lead to the smallest R_{AA}

Largest anisotropy in Glauber initializations leads to largest v_2

DREENA-A can differentiate different temperature profiles. Excellent tool to infer bulk properties of the medium.
Early evolution using DREENA-A

1. Cyan → $\tau_q = \tau_0 = 0.2\text{fm}$
2. Orange → $\tau_0 = 0.2\text{fm}; \tau_q = 1\text{fm}$
3. Red → FS; $\tau_0 = \tau_q = 1\text{fm}$
4. Black → $\tau_0 = \tau_q = 1\text{fm}$
 - Fits low-p_{\perp} data well
 - Divergent is disfavored by R_{AA} data
 - Delaying τ_q hardly changes v_2
 - Early FS does not fit data as well
 - v_2 predictions approach data when $\tau_0 = \tau_q = 1\text{fm}$ (No early free steaming)

$\text{Pb + Pb } \sqrt{s} = 5.02\text{ TeV}$
Generalized DREENA-A

• Further optimization of DREENA-A to incorporate event-by-event fluctuating temperature profiles
• Three different event-by-event initializations
 ○ Full = MC Glauber, $\tau_0 = 1 fm$, No FS
 ○ Dashed = IP Glasma, $\tau_0 = 0.4 fm$
 ○ Dotdashed = TRENTo, $\tau_0 = 1.16 fm$, FS
• Different initializations lead to different high-p_{\perp} predictions.
• Best agreement with Glauber + no FS.
• Predictions vastly underestimates v_4: High-p_{\perp} v_4 puzzle
\(\eta/s \) of QCD matter

- \(10^4 \, T_{\text{R\,ENTo}} \) events generated for Pb+Pb \((\sqrt{s} = 5.02 \, \text{TeV}) \) and Au+Au \((\sqrt{s} = 200 \, \text{GeV}) \) collisions.
- No pre-equilibrium free streaming of particles.
- \(\tau_0 = 1\,fm + (2+1)D \) evolution
- Three \((\eta/s)(T)\) parametrizations have been considered
- Three scenarios agree well with the low-\(p_{\perp} \) data.

Can high-p_{\perp} observables constrain η/s?

R_{AA}, high-p_{\perp} v_2, v_3, v_4 can not differentiate between the three cases due to small temperature differences.
Summary

1. High-p_\perp particles traverses through and interact with the medium created in HICs.
2. Can be used to study medium properties along with the low-p_\perp sector.
3. Numerical implementation of the radiative and collisional energy loss formalism within the DREENA framework
4. DREENA-C (Constant temperature): Joint predictions for R_{AA} and v_2, Agrees well with the high-p_\perp data.
5. DREENA-B (Bjorken expansion): R_{AA} affected by pre-equilibrium stage, v_2 insensitive to pre-equilibrium stage
6. DREENA-A(Adaptive temperature): Can differentiate different temperature profiles, Still R_{AA} and not v_2 sensitive to pre-equilibrium energy loss
7. Generalized DREENA-A (event-by-event): High-p_\perp observables, especially higher harmonics sensitive to initial stage, Can not differentiate among the three η/s parametrizations considered
Thank you
Quantitative explanation of DREENA-B results

• \(R_{AA} \approx \frac{R_{AA}^{in} + R_{AA}^{out}}{2} \), \(v_2 \approx \frac{1}{2} \frac{R_{AA}^{in} - R_{AA}^{out}}{R_{AA}^{in} + R_{AA}^{out}} \)

1. **Blue** = Linear/FS
2. **Orange** = Constant/FS
3. **Green** = Divergent/FS

• Proportionality factors

\[\gamma_i = \frac{R_{AA,i}}{R_{AA,FS}}, \quad \gamma_i^{in} = \frac{R_{AA,i}^{in}}{R_{AA,FS}}, \quad \gamma_i^{out} = \frac{R_{AA,i}^{out}}{R_{AA,FS}} \]

\(\gamma_i \approx \gamma_i^{in} \approx \gamma_i^{out} \) for all \(i \) \(\implies \) \(v_2 \) same for all cases

\(\gamma \) different for different \(i \) \(\implies \) \(R_{AA} \) sensitive to pre-equilibrium stage
D. Zigic, I. Salom, J. Auvinen, P. Huovinen and M. Djordjevic, Front. in Phys. 10 (2022) 957019

\[\text{Au + Au } \sqrt{s} = 200 \text{ GeV} \]
Early evolution from DREENA-A

Full- D meson, Dashed - B meson

\[\text{Pb+Pb} \sqrt{s} = 5.02 \text{ TeV} \]
Study of η/s using Generalized DREENA-A

Pb+Pb($\sqrt{s} = 5.02$ TeV)
Au+Au($\sqrt{s} = 200$ GeV)

Study of η/s using Generalized DREENA-A

- $\text{Pb} + \text{Pb} \sqrt{s} = 5.02$ TeV
- Full = LHHQ; DotDashed = Nature, Dashed = Constant
- Inset: Dotdashed = Nature, Dashed = LHHQ