Jet measurements in small systems relevant for medium modifications

LCHP 2023

Outline

- Signatures and hard probes for quark-gluon plasma
- Observations in small size final states
 - Constraints on jet quenching based on latest measurements
 - Collective behavior in several systems
 - Dijet correlations and per-event yields

QGP medium with hard probes

- Quark Gluon Plasma (QGP): unique state of matter formed in heavy ion collisions
- Wide range of signatures in dense system
 - Suppression of jet spectra due to the energy loss in strongly interacting medium
 - Azimuthal anisotropies (collective flow)
- Smaller systems: benchmark for the interpretation of the heavy ion collision observations
 - Intermediate system: p-Pb collisions
 - Smallest: p-p collisions with high multiplicity

Jet suppression

- Modified particle p_T spectrum due to energy loss, observables of interest:
 - Nuclear modification factor
 - Per-jet charged particle yield
- Significant difference between heavyion and small systems
- Jet quenching in nuclear modification factor measurements

No quenching in p-Pb collisions at $p_T > 2 \text{ GeV}$

Clear sign of suppression in Pb-Pb events

Jet quenching constraints

- Combined measurements with jet $p_T > 30 \text{ GeV}$
- Focusing on the central collisions
- Similar trend for both sides
- Results are compared with Angantyr and AMPT (A MultiPhase Transport model) generator predictions
 - $p_T^{ch} > 4.5$ GeV: no UE subtraction is required
 - Running with or without final-state effects

No sign of jet quenching in $z = p_T^{ch} / p_T^{jet} = 0.05 - 1.0$

Final state anisotropies

• Two-particle angular correlations in high-energy collisions

- short range collective effects observed in all systems
- Ridge structure: hint of long range correlations

ALICE results compared to AMPT

- $v_2 > 0$ without jet quenching in high multiplicity p-Pb?
- Inclusive charged particles show different trend

Initial spatial

anisotropy

- AMPT predictions with string melting also included
 - All strings converted to q and anti-q
 - Elastic scattering between these partons responsible for long-range $Q_{pPb}(p_{T}; cent) = \frac{dN_{cent}^{pPb}/dp_{T}}{\langle N_{coll}^{Glauber} \rangle dN^{pp}/dp_{T}}$ correlations

the shorter axis of the volume

from hydrodynamic flow

Dijets in small systems

- Properties of dijets measured in photonuclear and p-Pb and p-p collisions
 - Angular correlations
 - Per-event dijet yields

PbPb 0.38 nb⁻¹ (5.02 TeV)

p > 30 GeV

< 2.4

Q_T < 25 GeV

 $P_T > Q_T$

> 20 GeV

6

 Φ [radian]

₫N/db

(1/N (1/N (1/N (1/N)))

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

CMS

🖶 Data

RAPGAP

Overview

- Hard probes can be used to explore the behavior of small systems
- Long-range angular correlations observed in heavy ion, but also in high multiplicity p-Pb and p-p collisions
- Elliptic flow $v_2 > 0$ in various measurements as in heavy-ion collisions
 - But no sign of jet quenching
 - Latest results: string melting model (in AMPT) suggests positive v₂ without hydrodynamical flow effects
- Modifications in dijet yields, and unexpected angular correlations are measured in photonuclear and p-Pb collisions
- Run-3 heavy ion runs provide unique opportunity: O-O collisions (details in backup) and increased p-Pb luminosity
 - Further understanding of the initial state is expected

Backup

Jet quenching constraints from ATLAS measurements

Oxygen run at the LHC

- Alternative intermediate system: O-O collisions
 - Broad covered final state multiplicity
 - Geometrically small system, but large fluctuations expected
 - Further investigation of the missing jet quenching
 - Flow effects can also be studied to explore the intermediate multiplicity range between p-p, p-Pb and Pb-Pb systems
- Short run is proposed at the LHC
 - 6.37 TeV cm energy with ~1 nb⁻¹ delivered data

Projections of the O-O run results

References

- CMS Collaboration "Charged-particle nuclear modification factors in PbPb and pPb collisions at $Vs_{NN} = 5.02 \text{ TeV}''$, <u>JHEP 04</u> (2017) 039
- ATLAS Collaboration "Transverse momentum and process dependent azimuthal anisotropies in Vs_{NN} = 8.16 TeV p+Pb collisions with the ATLAS detector", <u>EPJC 80 (2020) 73</u>
- ATLAS Collaboration "Strong constraints on jet quenching in centrality-dependent p+Pb collisions at 5.02 TeV from ATLAS", <u>CERN-EP-2022-086</u>
- ALICE Collaboration "Azimuthal anisotropy of jet particles in p-Pb and Pb-Pb collisions at $Vs_{NN} = 5.02$ TeV ", <u>CERN-EP-2022-290</u>
- ALICE Collaboration "ALICE physics projections for a short oxygen-beam run at the LHC", <u>ALICE-PUBLIC-2021-004</u>
- ATLAS Collaboration "Measurement of the centrality dependence of the dijet yield in p+Pb collisions at $Vs_{NN} = 8.16$ TeV p+Pb with the ATLAS detector", <u>ATLAS-CONF-2023-011</u>
- CMS Collaboration "Azimuthal correlations within exclusive dijets with large momentum transfer in photon-lead collisions", <u>CERN-EP-2021-071</u>
- CMS Collaboration "Constraining gluon distributions in nuclei using dijets in proton-proton and proton-lead collisions at Vs_{NN} = 5.02 TeV", <u>PRL 121 (2018) 062002</u>