LHCP 2023 - Large Hadron Collider Physics Conference 22-26 May 2023, Belgrade, Serbia Jet substructure measurements in heavy-ion collisions **Róbert Vértesi** íisner vertesi.robert@wigner.hu for the ALICE, CMS and ATLAS collaborations This work has been supported by the Hungarian NKFIH OTKA FK131979 and K135515

as well as the NKFIH 2021-4.1.2-TÉT-2022-00007 grants

Jets to probe the quark-gluon plasma

 Jet quenching: jets are modified in the quarkgluon plasma created in ultra-relativistic heavy-ion collisions

https://www.int.washington.edu/node/776

Jets to probe the quark-gluon plasma

- Jet quenching: jets are modified in the quarkgluon plasma created in ultra-relativistic heavy-ion collisions
- How does a color charge lose energy?
- What (angular) length scales can the QGP resolve?
 When do partons interact coherently?
- Signature of point-like scattering?
 Is there an emergent structure such as quasi-particles in the plasma?

https://www.int.washington.edu/node/776

Jets to probe the quark-gluon plasma

- Jet quenching: jets are modified in the quarkgluon plasma created in ultra-relativistic heavy-ion collisions
- How does a color charge lose energy?
- What (angular) length scales can the QGP resolve?
 When do partons interact coherently?
- Signature of point-like scattering?
 Is there an emergent structure such as quasi-particles in the plasma?

https://www.int.washington.edu/node/776

Large-R jets (CMS)

- First measurement of large-radius jets in Pb-Pb
- Substantial suppression at high momenta from small to large radii in central Pb-Pb collisions
- Sensitivity to energy loss mechanism as well as medium response
- Tension with models
 => Analysis of jet substructure
 to explore physics in details

Large-R jets (CMS)

- First measurement of large-radius jets in Pb-Pb
- Substantial suppression at high momenta from small to large radii in central Pb-Pb collisions
- Sensitivity to energy loss mechanism as well as medium response
- Tension with models
 => Analysis of jet substructure
 to explore physics in details

Jet grooming

- Grooming: access to the hard parton structure of a jet
 - Remove large-angle soft radiation: mitigate influence from underlying event, hadronization
 - Direct interface with QCD calculations

Jet grooming

- Grooming: access to the hard parton structure of a jet
 - Remove large-angle soft radiation: mitigate influence from underlying event, hadronization
 - Direct interface with QCD calculations

Soft-drop grooming

Larkoski et al., JHEP 05 (2014) 146

- Recluster a jet with
 Cambridge-Aachen algorithm (angular ordered)
- Iteratively remove soft branches not fulfilling SD condition $z>z_{\rm cut}\theta^{\beta}$

$$z = \frac{p_{T,2}}{p_{T,1} + p_{T,2}}$$
 $\theta = \frac{\Delta R_{12}}{R}$

Jet grooming

- Grooming: access to the hard parton structure of a jet
 - Remove large-angle soft radiation: mitigate influence from underlying event, hadronization
 - Direct interface with QCD calculations

Larkoski et al., JHEP 05 (2014) 146

- Recluster a jet with
 Cambridge-Aachen algorithm
 (angular ordered)
- Iteratively remove soft branches not fulfilling SD condition $z>z_{\rm cut}\theta^{\beta}$

$$z = \frac{p_{\rm T,2}}{p_{\rm T,1} + p_{\rm T,2}} \qquad \theta = \frac{\Delta R_{12}}{R}$$

Dynamical grooming

- Recluster the jet with the Cambridge-Aachen algorithm
- Look for the hardest splitting

$$\kappa^{(a)} = \frac{1}{p_{\mathrm{T}}} \max_{i \in \mathrm{C/A \, seq.}} \left[z_i (1 - z_i) p_{\mathrm{T},i} \left(\frac{\theta_i}{R} \right)^{\mathbf{g}} \right]$$

- a = 0.5 more symmetrical, narrow splitting
- a = 1 splitting with largest $k_{\rm T} \sim \kappa^{(1)} p_{\rm T}$
- a = 2 shortest formation time splitting, $t_f^{-1} \sim \kappa^{(2)} p_T$

Hardest-k_T splitting (ALICE)

 High-k_T emissions can be a signature of point-like scattering

- First measurement with dynamical grooming in Pb+Pb collisions
- Soft-drop grooming with $z_{cut} = 0.2$
- Grooming methods converge toward high-k_T

Hardest-k_T splitting (ALICE)

 High-k_T emissions can be a signature of point-like scattering

- First measurement with dynamical grooming in Pb+Pb collisions
- Soft-drop grooming with $z_{cut} = 0.2$
- Grooming methods converge toward high-k_T
- No clear enhancement at high-k_T
- Model without Molière scattering describes data better

LHCP 2023

SD-groomed radius (ATLAS)

- Jets with wider opening angle lose significantly more energy
 - Jets with large r_g are approximately twice as suppressed than at small r_g
 Narrowing of jets

SD-groomed radius (ATLAS)

- Jets with wider opening angle lose significantly more energy
 - Jets with large r_g are approximately twice as suppressed than at small r_g
- The suppresion does not depend strongly on p_T, regardless of r_g
 - p_T -dependence of inclusive jets from change of r_g distribution
 - qualitatively consistent with jet quenching from coherence

Jet reclustering

- Small-radius (R=0.2) jets are reconstructed with the anti-k_T algorithm
- A p_T^{jet}>35 GeV/c threshold is applied
- The remaining jets are reconstructed into largeradius (*R*=1.0) jets
- The small-R jets are reclustered using the $k_{\rm T}$ algorithm to determine angular separation and splitting parameter

$$\Delta R_{12} = \sqrt{\Delta y_{12}^2 + \Delta \phi_{12}^2}$$

$$\sqrt{d_{12}} = \min(p_{T1}, p_{T2}) \times \Delta R_{12} \sim k_T$$

Reclustered large-radius jets (ATLAS)

- Reclustered R=1 jets are slightly more suppressed than smaller-radii inclusive jets
- Significant difference in the quenching of large-radius jets having single sub-jet and those with more complex substructure

Reclustered large-radius jets (ATLAS)

- Reclustered R=1 jets are slightly more suppressed than smaller-radii inclusive jets
- Significant difference in the quenching of large-radius jets having single sub-jet and those with more complex substructure
- No pronunced dependence on $\sqrt{d_{12}} \sim k_T$ separation
- => supports decoherence beyond a critical splitting angle

Jet axis differences

$$\Delta R_{\text{axis}} = \sqrt{(y_2 - y_1)^2 + (\varphi_2 - \varphi_1)^2}$$

- Standard axis: formed by the sum of pseudo-jet four-momenta in the clusterization with E-scheme
- Soft-Drop groomed jet axis: sum of four-momenta of constituents accepted by the SD grooming
- Winner-takes-all axis: recluster with CA algorithm, always combine prongs in direction of the stronger one
 insensitive to soft radiation

Jet axis difference (ALICE)

- Narrowing in heavy-ion collisions compared to the vacuum
- Sensitivity to medium resolution length: comparison to the Hybrid model
 J. Casalderrey-Solana, JHEP 10 (2014) 019
 - Measurement favors incoherent energy loss
- Intra-jet p_T broadening model does not describe data trend

arXiv:2303.13347 NEW!

Generalized jet angularities and jet mass

 Angularities: class of observables that depend on both the longitudinal and angular properties of jet splittings

$$\lambda_{\alpha}^{\kappa} = \sum_{i \in \text{iet}} z_i^{\kappa} \theta_i^{\alpha}$$
 $z_i = \frac{p_{\text{T,i}}}{p_{\text{T,jet}}} \quad \theta_i = \frac{\Delta R_{i,\text{jet}}}{R}$

- IRC-safe observables for $\kappa = 1$, $\alpha > 0$ => Theoretically accessible in the vacuum case
- Generalization of existing jet properties with continously tunable parameters

- Jet thrust
$$\lambda_2^1$$

– **Jet mass:** related to jet thrust
$$\lambda_2^1 = \left(\frac{m}{Rp_{\mathrm{T}}}\right)^2 + \mathcal{O}[(\lambda_2^1)^2]$$
 Kang et al., JHEP 1804 (2018) 110

Generalized jet angularities (ALICE)

$$\lambda_{\alpha}^{\kappa} = \sum_{i \in \text{jet}} z_i^{\kappa} \theta_i^{\alpha}$$

- Groomed and ungroomed generalized jet angularities reveal effect of soft radiation
- Shift toward lower angularities
 - => Narrowing of jets for both the groomed and ungroomed case

Jet mass (ALICE)

- Jet mass related to thrust $m_{\rm jet} \sim z\theta^2$
- Shift towards lower masses> Narrowing of jets
 - Several models describe jet quenching
- Grooming enhances sensitivity to modification of jet fragmentation
 - Modification of the jet core?

Jet shapes

- Jets clustered with anti-k_T using the E-scheme
- Axis calculated using WTA algorithm
- Jet shapes defined as

$$\rho(\Delta r) = \frac{1}{\delta r} \frac{1}{N_{\rm jets}} \frac{\sum_{\rm jets} \sum_{\rm tracks \in (r_a, r_b)} p_{\rm T}^{\rm ch}}{\sum_{\rm jets} \sum_{\rm tracks \in r < 1} p_{\rm T}^{\rm ch}}$$

- Complementary information to groomed substructure measurements
- Sensitive to soft radiation, background needs to be under control

CMS, JHEP 06 (2012) 160

Dijet shapes (CMS)

Back-to-back dijet shapes

$$\rho(\Delta r) = \frac{1}{\delta r} \frac{1}{N_{\rm jets}} \frac{\sum_{\rm jets} \sum_{\rm tracks \in (r_a, r_b)} \rho_{\rm T}^{\rm ch}}{\sum_{\rm jets} \sum_{\rm tracks \in r \leq 1} \rho_{\rm T}^{\rm ch}}$$

 in terms of momentum imbalance

$$x_j = p_{\mathrm{T}}^{\mathrm{subleading}}/p_{\mathrm{T}}^{\mathrm{leading}}$$

- Leading jets:
 - redistribution of energy from small angles w.r.t. the jet axis to larger angles
 - Stronger for balanced jetspath length dependence

JHEP 05 (2021) 116

b-jet shapes (CMS)

First study of jet shapes in HI collisions

$$\rho(\Delta r) = \frac{1}{\delta r} \frac{1}{N_{\rm jets}} \frac{\sum_{\rm jets} \sum_{\rm tracks \in (r_a, r_b)} p_{\rm T}^{\rm ch}}{\sum_{\rm jets} \sum_{\rm tracks \in r \leq 1} p_{\rm T}^{\rm ch}}$$

- Low-∆r depletion of b-jets
- => consistent with a dead-cone
- High-Δr enhancement of b-jet shapes compared to inclusive jets, stronger in HI than in pp collisions
- => increased medium response to the propagation of a heavier quark

Summary

Jet substructure in heavy-ion collisions:
 a rapidly evolving area with lots of new measurements

https://www.int.washington.edu/node/776

Summary

- Jet substructure in heavy-ion collisions:
 a rapidly evolving area with lots of new measurements
- A tiny selection of the new results was shown
 - No clear evidence for point-like scattering centers
 - Jet suppression strongly dependent on jet substructure
 - General narrowing of the jet core
 - Pathlength-dependent modification patterns
 - Increased medium response to a heavier quark

https://www.int.washington.edu/node/77

Summary

- Jet substructure in heavy-ion collisions:
 a rapidly evolving area with lots of new measurements
- A tiny selection of the new results was shown
 - No clear evidence for point-like scattering centers
 - Jet suppression strongly dependent on jet substructure
 - General narrowing of the jet core
 - Pathlength-dependent modification patterns
 - Increased medium response to a heavier quark
- Increased sensitivity and new observables with the advent of Run 3
 - Energy-energy correlators, photon-tagged systems, v₂ with substructure etc...
 - Extended heavy-flavor measurements

https://www.int.washington.edu/node/776

Lund planes

Soft drop grooming

$$z>z_{\rm cut}\theta^{\beta}$$

$$z = \frac{p_{\rm T,2}}{p_{\rm T,1} + p_{\rm T,2}} \qquad \theta = \frac{\Delta R_{12}}{R}$$

Dynamical grooming

$$\kappa^{(a)} = \frac{1}{p_{\mathrm{T}}} \max_{i \in \mathrm{C/A} \, \mathrm{seq.}} \left[z_i (1 - z_i) p_{\mathrm{T}, i} \left(\frac{\theta_i}{R} \right)^a \right]$$

Reclustered large-radius jets (ATLAS)

- Reclustered R=1 jets are slightly more suppressed than smaller-radii inclusive jets
- Significant difference in the quenching of large-radius jets having single sub-jet and those with more complex substructure
- No pronunced dependence on ΔR_{12} separation
- => supports decoherence beyond a critical splitting angle

Generalized jet angularities α =2 (ALICE)

$$\lambda_{\alpha}^{\kappa} = \sum_{i \in \text{jet}} z_i^{\kappa} \theta_i^{\alpha}$$

- Groomed and ungroomed generalized jet angularities reveal effect of soft radiation
- Shift toward lower angularities
 => Narrowing of jets for both the groomed and ungroomed case

groomed

ungroomed

Dijet shapes (CMS)

Back-to-back dijet shapes

$$\rho(\Delta r) = \frac{1}{\delta r} \frac{1}{N_{\rm jets}} \frac{\sum_{\rm jets} \sum_{\rm tracks \in (r_a, r_b)} p_{\rm T}^{\rm ch}}{\sum_{\rm jets} \sum_{\rm tracks \in r < 1} p_{\rm T}^{\rm ch}}$$

- in terms of momentum imbalance
 x_j = p_T^{subleading} / p_T^{leading}
- Subleading jets
 - redistribution of energy from small angles w.r.t. the jet axis to larger angles
 - In unbalanced jets, fragmentation pattern consistent with a third jet

