

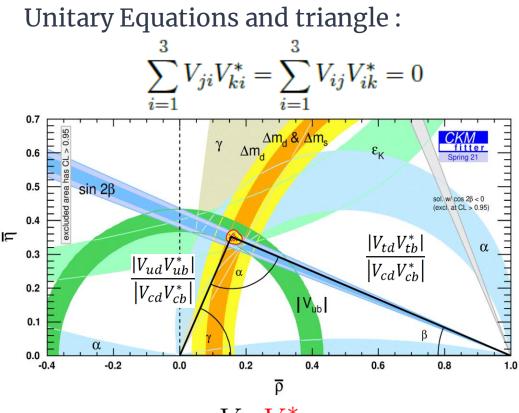
Time integrated CP violation in b decays at LHCb

Jessy DANIEL, Université Clermont-Auvergne On behalf of the LHCb collaboration

> **LHCP 2023** Belgrade, Serbia – 22-26 May 2023

OUTLINE

Simultaneous determination of the CKM angle **y**


• A study of CP violation in the decays $B^{\pm} \rightarrow [K^+K^-\pi^+\pi^-]_D h^{\pm}$ $(h = K, \pi)$ and $B^{\pm} \rightarrow [\pi^+\pi^-\pi^+\pi^-]_D h^{\pm}$

• Evidence for the decay $B^0 \to \overline{D}^{(*)0}\phi$ and updated measurements of the branching fractions of the $B_s^0 \to \overline{D}^{(*)0}\phi$ decays

The CKM Matrix, the Unitary Triangle and y angle

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

- CKM Matrix describes <u>transition between quarks</u> through weak interaction -> One of the main CP contribution to SM
- Its elements can be determined from experiment
 -> Parameterization with 4 independent parameters
- Goal : Sensitivity to BSM effects if Unitarity triangle different in direct and indirect measurements
- The current state of γ measurements (<u>CONF-2022-003-001</u>) :

Direct : $\gamma = (63.8^{+3.5}_{-3.7})^{\circ}$ -> Tree Level = Standard Candle **Indirect** : $\gamma = (65.66^{+0.9}_{-2.65})^{\circ}$ -> Loops / Pinguin diagrams

 $\gamma \equiv arg(-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}) \equiv arg(\bar{\rho} + i\bar{\eta}) = \text{CKM Matrix complex phase} = \frac{\text{The parameter to access CPV !}}{V_{cd}V_{cb}^*}$

The CKM Matrix, the Unitary Triangle and y angle

Unitary Equations and triangle :

 $\sum_{i=1}^{3} V_{ji} V_{ki}^{*} = \sum_{i=1}^{3} V_{ij} V_{ik}^{*} = 0$

Couplings	NP loop	Scales (in TeV) probed by		
Couplings	order	B_d mixing	B_s mixing	
$ C_{ij} = V_{ti}V_{tj}^* $	tree level	17	19	
(CKM-like)	one loop	1.4	1.5	
$ C_{ij} = 1$	tree level	2×10^3	5×10^2	
(no hierarchy)	one loop	2×10^2	40	

-> Test of global validity of the CKM formalism in tree level diagrams

Phys.Rev.D 89 (2014) 3, 033016

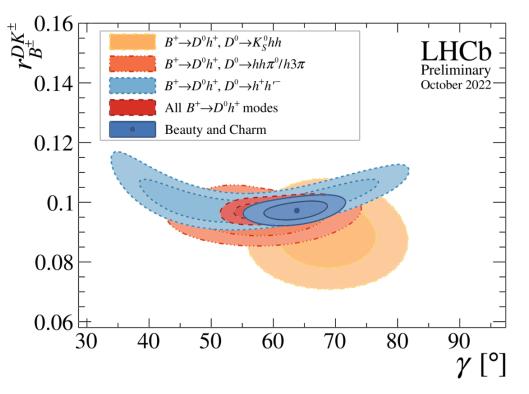
$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

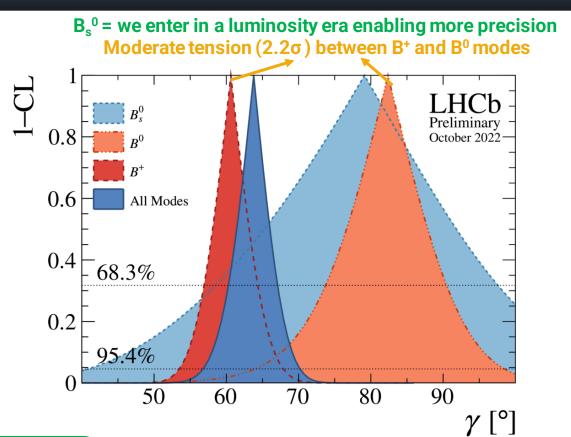
- CKM Matrix describes <u>transition between quarks</u> through weak interaction -> One of the main CP contribution to SM
- Its elements can be determined from experiment
 -> Parameterization with 4 independent parameters
- Goal : Sensitivity to BSM effects if Unitarity triangle different in direct and indirect measurements
- The current state of γ measurements (<u>CONF-2022-003-001</u>) :

Direct : $\gamma = (63.8^{+3.5}_{-3.7})^{\circ}$ -> Tree Level = Standard Candle **Indirect** : $\gamma = (65.66^{+0.9}_{-2.65})^{\circ}$ -> Loops / Pinguin diagrams

 <u>According to CKMfitter group</u>, a 1° precision on direct measurement test SM up to dozens of TeV energy scales
 <u>According to CKMfitter group</u>, a 1° precision on direct measurement test
 <u>According to CKMfitter group</u>, a 1° precision on direct measurement test
 <u>According to CKMfitter group</u>, a 1° precision on direct measurement test
 <u>According to CKMfitter group</u>, a 1° precision on direct measurement test
 <u>According to CKMfitter group</u>, a 1° precision on direct measurement test
 <u>According to CKMfitter group</u>, a 1° precision on direct measurement test
 <u>According to CKMfitter group</u>, a 1° precision on direct measurement test

LHCb **Y** combination

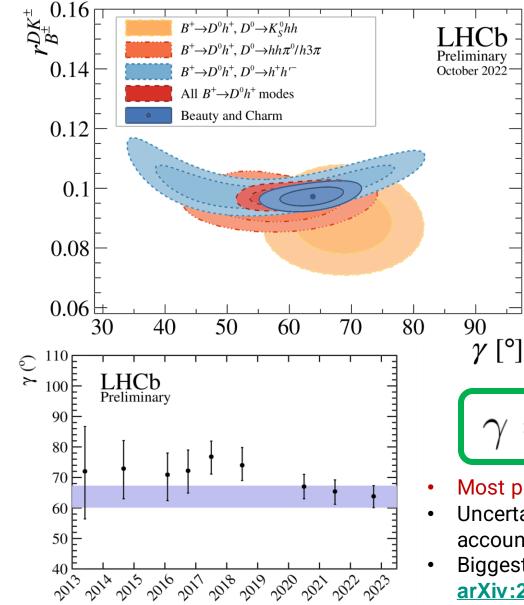

B decay	D decay	Ref.	Dataset	Status since
_ accey	2 accay			Ref. [14]
$B^{\pm} \rightarrow Dh^{\pm}$	$D \rightarrow h^+ h^-$	29	Run 1&2	As before
$B^{\pm} \rightarrow Dh^{\pm}$	$D \to h^+\pi^-\pi^+\pi^-$	30	Run 1	As before
$B^{\pm} \rightarrow Dh^{\pm}$	$D \to K^\pm \pi^\mp \pi^+ \pi^-$	18	Run 1&2	New
$B^{\pm} \rightarrow Dh^{\pm}$	$D \to h^+ h^- \pi^0$	19	Run 1&2	Updated
$B^{\pm} \rightarrow Dh^{\pm}$	$D \rightarrow K_{\rm S}^0 h^+ h^-$	31]	Run 1&2	As before
$B^{\pm} \rightarrow Dh^{\pm}$	$D \to K^0_{\rm S} K^{\pm} \pi^{\mp}$	[32]	Run 1&2	As before
$B^{\pm} \rightarrow D^* h^{\pm}$	$D \to h^+ h^-$	29	Run 1&2	As before
$B^{\pm} \rightarrow DK^{*\pm}$	$D \to h^+ h^-$	[33]	Run $1\&2(*)$	As before
$B^{\pm} \rightarrow DK^{*\pm}$	$D \to h^+ \pi^- \pi^+ \pi^-$	33	Run $1\&2(*)$	As before
$B^\pm \to D h^\pm \pi^+ \pi^-$	$D \to h^+ h^-$	[34]	Run 1	As before
$B^0 \to DK^{*0}$	$D \to h^+ h^-$	[35]	Run $1\&2(*)$	As before
$B^0 \to DK^{*0}$	$D \to h^+ \pi^- \pi^+ \pi^-$	[35]	Run $1\&2(*)$	As before
$B^0 \to DK^{*0}$	$D \rightarrow K_{\rm S}^0 \pi^+ \pi^-$	[36]	Run 1	As before
$B^0 \to D^{\mp} \pi^{\pm}$	$D^+ \to K^- \pi^+ \pi^+$	[37]	Run 1	As before
$B_s^0 \to D_s^{\mp} K^{\pm}$	$D_s^+ \rightarrow h^+ h^- \pi^+$	[38]	Run 1	As before
$B_s^0 \rightarrow D_s^{\mp} K^{\pm} \pi^+ \pi^-$	$D_s^+ \rightarrow h^+ h^- \pi^+$	[39]	Run 1&2	As before
D decay	Observable(s)	Ref.	Dataset	Status since
				Ref. 14
 $D^0 \rightarrow h^+ h^-$	ΔA_{CP}	[24, 40, 41]	Run 1&2	As before
$D^0 ightarrow K^+ K^-$	$A_{CP}(K^+K^-)$	16.24.25	Run 2	\mathbf{New}
$D^0 ightarrow h^+ h^-$	$y_{CP} - y_{CP}^{K^-\pi^+}$	42	Run 1	As before
$D^0 ightarrow h^+ h^-$	$y_{CP} - y_{CP}^{K^-\pi^+}$	15	Run 2	New
$D^0 ightarrow h^+ h^-$	ΔY	43 - 46	Run 1&2	As before
$D^0 \to K^+ \pi^-$ (Single Tag)	$R^{\pm}, (x'^{\pm})^2, y'^{\pm}$	47	Run 1	As before
$D^0 \to K^+ \pi^-$ (Double Tag)	$R^{\pm}, (x'^{\pm})^2, y'^{\pm}$	48	Run $1\&2(*)$	As before
$D^0 \to K^{\pm} \pi^{\mp} \pi^+ \pi^-$	$(x^2 + y^2)/4$	49	Run 1	As before
$D^0 \rightarrow K^0_{\rm S} \pi^+ \pi^-$	x, y	50	Run 1	As before
$D^0 \rightarrow K^0_{\rm S} \pi^+ \pi^-$	$x_{CP}, y_{CP}, \Delta x, \Delta y$	51	Run 1	As before
 $D^0 \rightarrow K^0_{\rm S} \pi^+ \pi^-$	$x_{CP}, y_{CP}, \Delta x, \Delta y$	52	Run 2	As before
$D^0 \to K_{\rm S}^0 \pi^+ \pi^- \ (\mu^- \ {\rm tag})$	$x_{CP}, y_{CP}, \Delta x, \Delta y$	17	Run 2	New

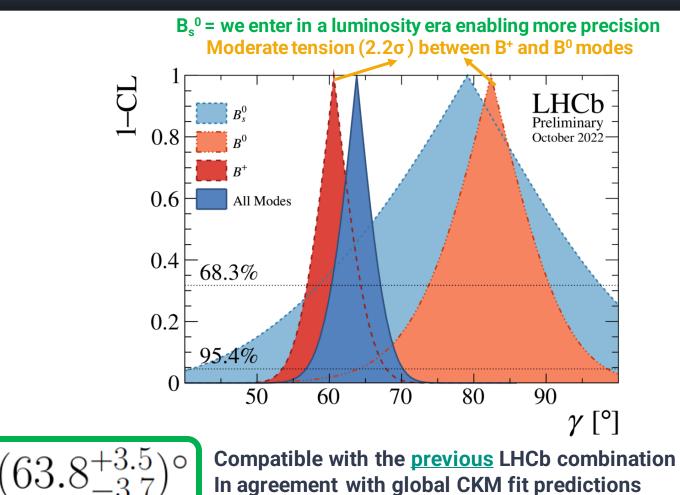

🗩 See plenary talk by Lei Hao

- Frequentist approach (Profile Likelihood + Plugin Feldman-Cousins)
- + Auxiliary inputs from HFLAV, BESIII, CLEO and LHCb 173 input observables to determine 52 free parameters
 - Using two different and independent frameworks to crosscheck each other : gammadini & GammaCombo
 - Simultaneous determination of γ and charm mixing parameters

LHCb ¥ combination

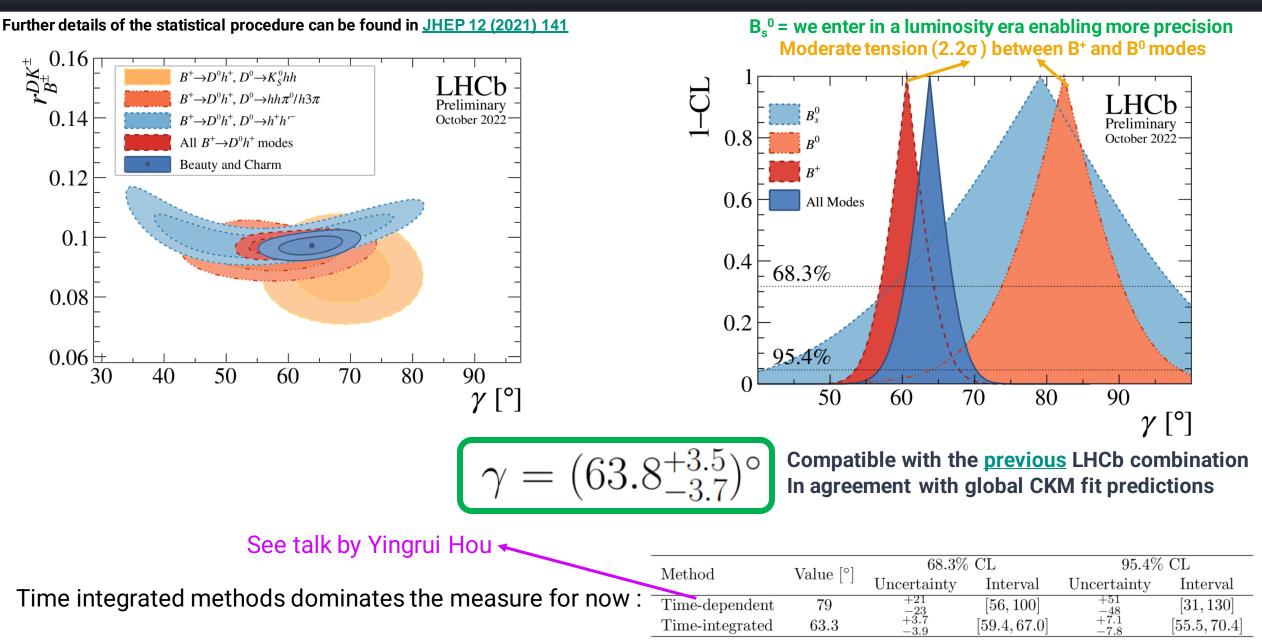
Further details of the statistical procedure can be found in JHEP 12 (2021) 141





$$\gamma = (63.8^{+3.5}_{-3.7})^{\circ}$$

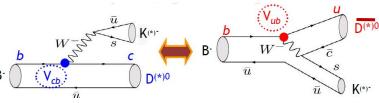
LHCb ¥ combination


Further details of the statistical procedure can be found in JHEP 12 (2021) 141

- Most precise determination of γ from a single experiment
- Uncertainties still in the regime of statistical dominance -> Systematic uncertainties account for ~1.4°
- Biggest improvement from the new $B \rightarrow Dh^{\pm}, D \rightarrow K^{\pm}\pi^{\mp}\pi^{+}\pi^{-}$ results arXiv:2209.03692 (submitted to PRD)-> See Lei Hao's talk

LHCb ¥ combination

CP Violation in the decays $B^{\pm} ightarrow [h^+h^-\pi^+\pi^-]_D h^{\pm}$


- Aim of this analysis : Measure CP observables in $B^{\pm} \rightarrow [h^+h^-\pi^+\pi^-]_D h^{\pm}$ decays using full Run1+2 (9fb⁻¹)
 - First study of CP violation in this channel
 - Enhance sensitivity through sophisticated binning of 5D phase space
 - Provide input for future model-independent measurement of γ
 - + Measurements also performed of phase-space integrated observables

CP Violation in the decays $B^{\pm} \rightarrow [h^+h^-\pi^+\pi^-]_D h^{\pm}$

- Aim of this analysis : Measure CP observables in $B^{\pm} \rightarrow [h^+h^-\pi^+\pi^-]_D h^{\pm}$ decays using **full Run1+2 (9fb**⁻¹)
 - First study of CP violation in this channel
 - Enhance sensitivity through sophisticated binning of 5D phase space
 - Provide input for future model-independent measurement of γ

Phys. Rev. D (2003) 68, 054018

+ Measurements also performed of phase-space integrated observables

 $[K^+K^-\pi^+\pi^-]_D K^-$

Eur.Phys.J.C (2008) 55:51-56 • Overall Amplitude of this decay : $\begin{bmatrix} \mathcal{A}_{B^-}(\phi) = \mathcal{A}_{B^-}^{D^0K^-}(\mathcal{A}_{D^0}(\phi) + r_B^{DK}exp(i(\delta_B^{DK} - \gamma))\mathcal{A}_{\bar{D}^0}(\phi)) \\ \mathcal{A}_{B^+}(\phi) = \mathcal{A}_{B^+}^{D^0K^+}(\mathcal{A}_{\bar{D}^0}(\phi) + r_B^{DK}exp(i(\delta_B^{DK} + \gamma))\mathcal{A}_{D^0}(\phi)) \end{bmatrix}$

- Strong-phase difference of D^0 and \overline{D}^0 decays inaccessible at LHCb (OK at BESIII and Cleo-C)
- D-decay phase-space split into bins -> yields of B^+ in each bin *i* : •

BPGGSZ formalism

 $\begin{bmatrix} N_{+i}^{+} = h_{B^{+}}^{DK} (F_{-i} + ((x_{+}^{DK})^{2} + (y_{+}^{DK})^{2}) F_{+i} + 2\sqrt{F_{+i}F_{-i}} (x_{+}^{DK}c_{i} - y_{+}^{DK}s_{i})) \\ N_{-i}^{-} = h_{B^{-}}^{DK} (F_{-i} + ((x_{-}^{DK})^{2} + (y_{-}^{DK})^{2}) F_{+i} + 2\sqrt{F_{+i}F_{-i}} (x_{-}^{DK}c_{i} - y_{-}^{DK}s_{i}))$

CP observables :

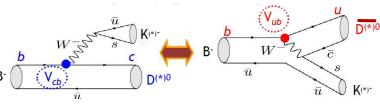
- $\begin{array}{c} x_{\pm}^{DK} = r_B^{DK} cos(\delta_B^{DK} \pm \gamma) \\ y_{\pm}^{DK} = r_B^{DK} sin(\delta_B^{DK} \pm \gamma) \end{array} \end{array}$
- $x_{\xi}^{D\pi} = Re(\xi^{D\pi})$ $y_{\xi}^{D\pi} = Im(\xi^{D\pi})$ $(\xi^{D\pi} = \frac{r_{B}^{D\pi}}{r_{B}^{DK}}e^{i(\delta_{B}^{D\pi} \delta_{B}^{DK})})$
- Fractional bin yield :
 - $F_i = \frac{\int_i d\phi \eta(\phi) |\mathcal{A}(D^0)|^2}{\sum_i \int_i d\phi \eta(\phi) |\mathcal{A}(D^0)|^2}$
 - Floated in the fit, mostly constrained by $B^{\pm} \rightarrow D\pi^{\pm}$

• Amplitude averaged strong phases :

•
$$c_i = \frac{\int_i d\phi |\mathcal{A}(D^0)| |\mathcal{A}(\bar{D^0})| cos(\Delta \delta_D)}{\sqrt{\int_i d\phi |\mathcal{A}(D^0)|^2 \int_i d\phi |\mathcal{A}(\bar{D^0})|^2}}$$

$$s_i = rac{\int_i d\phi |\mathcal{A}(D^0)| |\mathcal{A}(ar{D^0})| sin(\Delta \delta_D)}{\sqrt{\int_i d\phi |\mathcal{A}(D^0)|^2 \int_i d\phi |\mathcal{A}(ar{D^0})|^2}}$$

LHCb-PAPER-2022-037


CP Violation in the decays $B^{\pm} \rightarrow [h^+h^-\pi^+\pi^-]_D h^{\pm}$

- Aim of this analysis : Measure CP observables in $B^{\pm} \rightarrow [h^+h^-\pi^+\pi^-]_D h^{\pm}$ decays using **full Run1+2 (9fb**⁻¹)
 - First study of CP violation in this channel
 - Enhance sensitivity through sophisticated binning of 5D phase space
 - Provide input for future model-independent measurement of γ

Phys. Rev. D (2003) 68, 054018

Eur.Phys.J.C (2008) 55:51-56

+ Measurements also performed of phase-space integrated observables

 $[K^+K^-\pi^+\pi^-]_D K$

• Overall Amplitude of this decay : $\begin{bmatrix} \mathcal{A}_{B^-}(\phi) = \mathcal{A}_{B^-}^{D^0K^-}(\mathcal{A}_{D^0}(\phi) + r_B^{DK}exp(i(\delta_B^{DK} - \gamma))\mathcal{A}_{\bar{D}^0}(\phi)) \\ \mathcal{A}_{B^+}(\phi) = \mathcal{A}_{B^+}^{D^0K^+}(\mathcal{A}_{\bar{D}^0}(\phi) + r_B^{DK}exp(i(\delta_B^{DK} + \gamma))\mathcal{A}_{D^0}(\phi)) \end{bmatrix}$

- Strong-phase difference of D^0 and \overline{D}^0 decays inaccessible at LHCb (OK at BESIII and Cleo-C)
- D-decay phase-space split into bins -> yields of B^+ in each bin *i* : •

BPGGSZ formalism

 $\begin{bmatrix} N_{+i}^{+} = h_{B^{+}}^{DK} (F_{-i} + ((x_{+}^{DK})^{2} + (y_{+}^{DK})^{2}) F_{+i} + 2\sqrt{F_{+i}F_{-i}} (x_{+}^{DK}c_{i} - y_{+}^{DK}s_{i})) \\ N_{-i}^{-} = h_{B^{-}}^{DK} (F_{-i} + ((x_{-}^{DK})^{2} + (y_{-}^{DK})^{2}) F_{+i} + 2\sqrt{F_{+i}F_{-i}} (x_{-}^{DK}c_{i} - y_{-}^{DK}s_{i})) \end{bmatrix}$

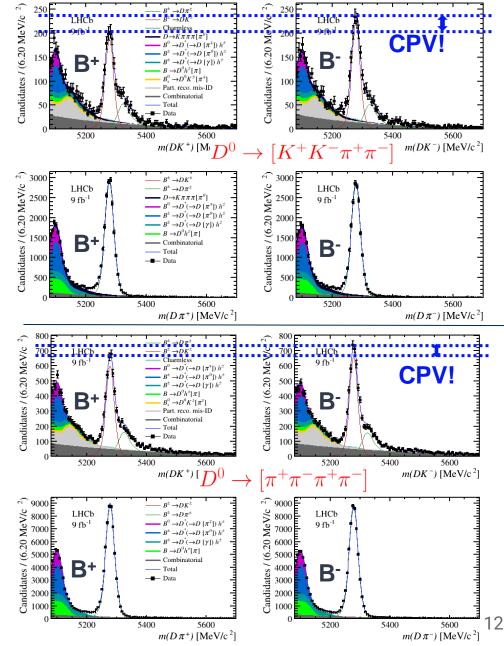
CP observables :

- $\begin{array}{c} x_{\pm}^{DK} = r_B^{DK} cos(\delta_B^{DK} \pm \gamma) \\ y_{\pm}^{DK} = r_B^{DK} sin(\delta_B^{DK} \pm \gamma) \end{array} \end{array}$
- $\begin{cases} x_{\xi}^{D\pi} = Re(\xi^{D\pi}) \\ u_{\epsilon}^{D\pi} = Im(\xi^{D\pi}) \end{cases} (\xi^{D\pi} = \frac{r_{B}^{D\pi}}{r_{B}^{DK}}e^{i(\delta_{B}^{D\pi} \delta_{B}^{DK})}) \end{cases}$
- Fractional bin yield :
 - $F_i = \frac{\int_i d\phi \eta(\phi) |\mathcal{A}(D^0)|^2}{\sum_i \int_i d\phi \eta(\phi) |\mathcal{A}(D^0)|^2}$
 - Floated in the fit, mostly constrained by $B^{\pm} \rightarrow D\pi^{\pm}$

• Amplitude averaged strong phases :

•
$$c_{i} = \frac{\int_{i} d\phi |\mathcal{A}(D^{0})| |\mathcal{A}(\bar{D}^{0})| \cos(\Delta \delta_{D})}{\sqrt{\int_{i} d\phi |\mathcal{A}(D^{0})|^{2} \int_{i} d\phi |\mathcal{A}(\bar{D}^{0})|^{2}}}$$
•
$$s_{i} = \frac{\int_{i} d\phi |\mathcal{A}(D^{0})| |\mathcal{A}(\bar{D}^{0})| \sin(\Delta \delta_{D})}{\sqrt{\int_{i} d\phi |\mathcal{A}(D^{0})|^{2} \int_{i} d\phi |\mathcal{A}(\bar{D}^{0})|^{2}}}$$
Taken from an amplitude model JHEP 02 (2019) 126

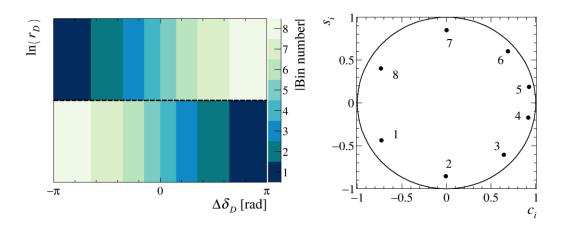
LHCb-PAPER-2022-037


CP Violation in the decays $B^\pm o [h^+h^-\pi^+\pi^-]_D h^\pm$

- Here are the invariant-mass distributions integrated over phase-space :
- Gives possibility to also do the measurements of phase-space integrated observables ---> Another statistically independent analysis

•
$$A_h^{KK\pi\pi} \equiv \frac{\Gamma(B^- \to Dh^-) - \Gamma(B^+ \to Dh^+)}{\Gamma(B^- \to Dh^-) + \Gamma(B^+ \to Dh^+)} = \frac{2r_B^{Dh}\kappa sin(\delta_B^{Dh})sin(\gamma)}{1 + (r_B^{Dh})^2 + 2r_B^{Dh}\kappa cos(\delta_B^{Dh})cos(\gamma)}$$

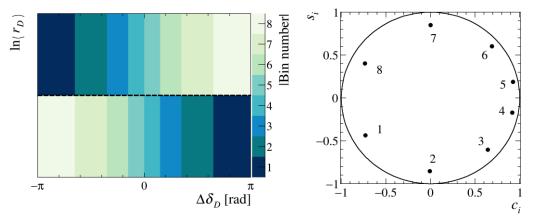
where $\kappa = 2F_+^{KK\pi\pi} - 1$
CP-even fraction of the decay, taken from $\frac{\text{Phys. Rev. D 107, 032009 (BES III)}}{\text{Phys. Rev. D 106, 092004 (BES III)}}$
• $R_{CP}^{KK\pi\pi} \equiv \frac{R_{KK\pi\pi}}{R_{K\pi\pi\pi}} = 1 + (r_B^{DK})^2 + 2r_B^{DK}\kappa cos(\delta_B^{DK})cos(\gamma)$
from arXiv:2209.03692(submitted to PRD)
with $R_* = \frac{\Gamma(B^- \to [f]_D K^-) + \Gamma(B^+ \to [f]_D K^+)}{1 + \Gamma(B^+ \to [f]_D K^+)}$


with
$$R_f \equiv \frac{\Gamma(B \to [f]DR) + \Gamma(B \to [f]DR)}{\Gamma(B^- \to [f]D\pi^-) + \Gamma(B^+ \to [f]D\pi^+)}$$

	CP-violating observable	Fit results
	$A_K^{KK\pi\pi}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Consistent with <u>Phys.Let.B 760</u> (2016),117-131	$A_{\pi}^{KK\pi\pi}$	$\begin{array}{rrr} -0.009 & \pm 0.006 & \pm 0.001 \\ 0.060 & \pm 0.013 & \pm 0.001 \end{array}$
	$\begin{array}{c} A_{\pi}^{\pi\pi\pi\pi}\\ R_{CP}^{KK\pi\pi} \end{array}$	$\begin{array}{r} -0.0082 \pm 0.0031 \pm 0.0007 \\ 0.974 \ \pm 0.024 \ \pm 0.015 \end{array}$
	$\begin{matrix} R_{CP} \\ R_{CP}^{\pi\pi\pi\pi} \end{matrix}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

CP Violation in the decays $B^\pm o [h^+h^-\pi^+\pi^-]_D h^\pm$

• The binning scheme is defined in a 2D surface defined by : $\Delta \delta_D \equiv arg(\frac{A_{D^0}}{A_{\bar{D}^0}}), r_D \equiv |\frac{A_{D^0}}{A_{\bar{D}^0}}|$ Bins are chosen to be symmetric around $\Delta \delta_D = 0$ and $ln(r_D) = 0$ Enhance sensibility to γ , following the procedure described in <u>JHEP 01 (2018), 144</u>, by maximizing the Q-value :

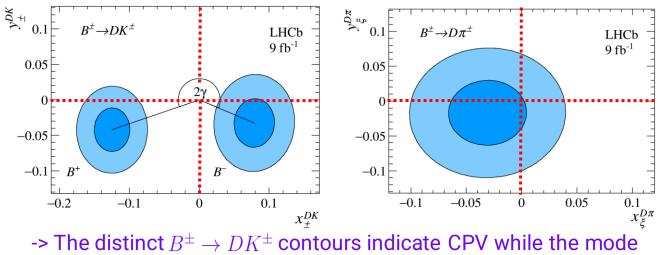

LHCb-PAPER-2022-037

$$\begin{split} Q^2 &\equiv (Q_+^2 + Q_-^2)/2 \\ Q_{\pm}^2 &\equiv 1 - (1 - \sum_i \frac{F_i F_{-i} (1 - c_i^2 - s_i^2)}{N_i^{\pm}}) (\sum_i F_i)^{-1} \end{split}$$

Calculated from the <u>amplitude model</u> + input of physical parameters

CP Violation in the decays $B^\pm o [h^+h^-\pi^+\pi^-]_D h^\pm$

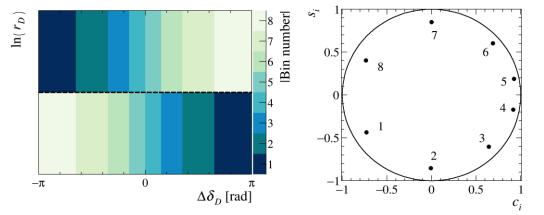
• The binning scheme is defined in a 2D surface defined by : $\Delta \delta_D \equiv arg(\frac{A_{D^0}}{A_{\bar{D}^0}}), r_D \equiv |\frac{A_{D^0}}{A_{\bar{D}^0}}|$ Bins are chosen to be symmetric around $\Delta \delta_D = 0$ and $ln(r_D) = 0$ Enhance sensibility to γ , following the procedure described in <u>JHEP 01 (2018), 144</u>, by maximizing the Q-value :



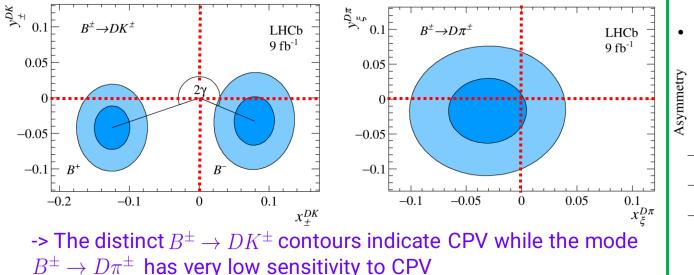
$$\begin{split} Q^2 &\equiv (Q_+^2 + Q_-^2)/2 \\ Q_{\pm}^2 &\equiv 1 - (1 - \sum_i \frac{F_i F_{-i} (1 - c_i^2 - s_i^2)}{N_i^{\pm}}) (\sum_i F_i)^{-1} \end{split}$$

Calculated from the <u>amplitude model</u> + input of physical parameters

• CP Fit Results from binned analysis :

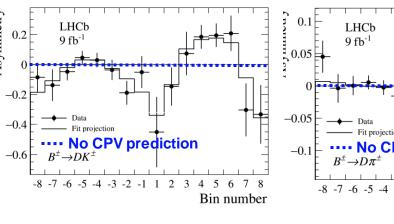

LHCb-PAPER-2022-037

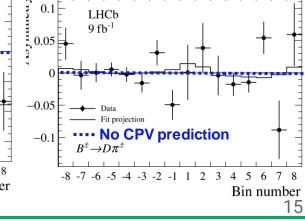
 $B^{\pm} \rightarrow D\pi^{\pm}$ has very low sensitivity to CPV


CP Violation in the decays $B^\pm o [h^+h^-\pi^+\pi^-]_D h^\pm$

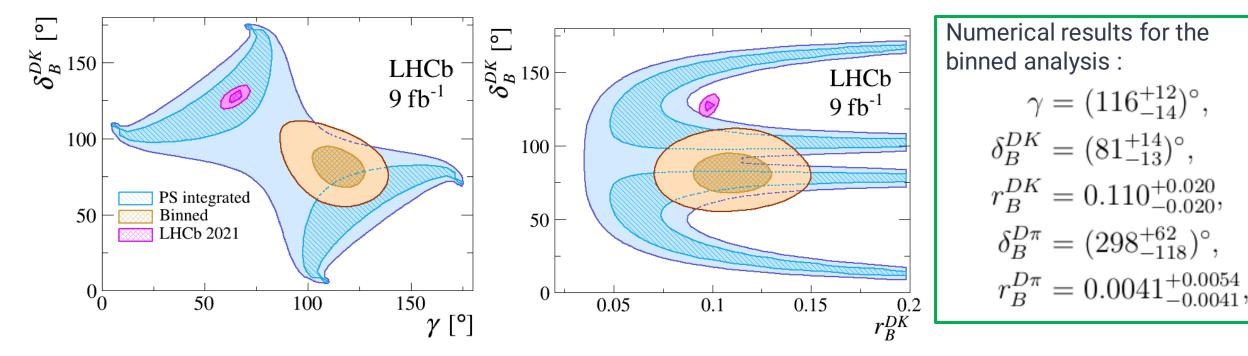
• The binning scheme is defined in a 2D surface defined by : $\Delta \delta_D \equiv arg(\frac{A_{D^0}}{A_{\bar{D}^0}}), r_D \equiv |\frac{A_{D^0}}{A_{\bar{D}^0}}|$ Bins are chosen to be symmetric around $\Delta \delta_D = 0$ and $ln(r_D) = 0$ Enhance sensibility to γ , following the procedure described in <u>JHEP 01 (2018), 144</u>, by maximizing the Q-value :

• CP Fit Results from binned analysis :

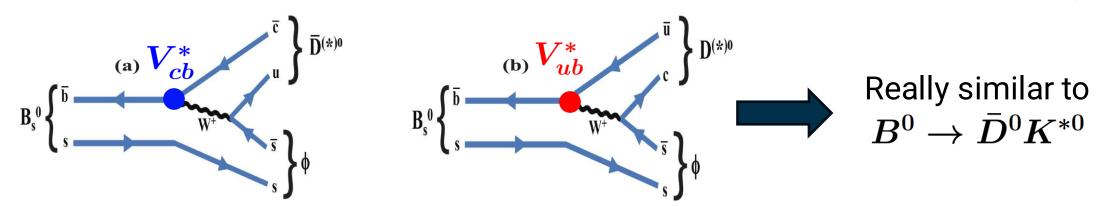

LHCb-PAPER-2022-037



$$\begin{split} Q^2 &\equiv (Q_+^2 + Q_-^2)/2 \\ Q_{\pm}^2 &\equiv 1 - (1 - \sum_i \frac{F_i F_{-i} (1 - c_i^2 - s_i^2)}{N_i^{\pm}}) (\sum_i F_i)^{-1} \end{split}$$


Calculated from the <u>amplitude model</u> + input of physical parameters

- Useful crosscheck to compare measured bin asymmetries against prediction by the fitted CP observables
- The $B^{\pm} \rightarrow DK^{\pm}$ mode shows non-zero bin asymmetries !
- Non-trivial distribution driven by strong phase variations


• Those results can then be interpreted in term of the underlying physics parameters :

- Values of γ from binned analysis high, but falls within the 3σ asymmetric contours
- Phase-space inclusive measurement are compatible with expectation
- This publication is model dependent BUT strong phases will be available from BESIII soon
 -> This paper allows a model independent update when c_i and s_i become available

Branching Fractions of $B^0 o ar{D}^{(*)0} \phi\,\, {
m and}\, B^0_s o ar{D}^{(*)0} \phi$

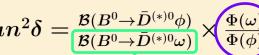
- Aim of this analysis :
 - First evidence for the decay $B^0 o ar{D}^{(*)0} \phi\,$ (Suppressed by the Okubo-Zweig-lizuka rules)
 - Such mode not been observed in b-hadron yet !
 - Constrain the $\omega-\phi$ mixing angle (with information from $B^0 o D^{(*)0}\omega$)
 - Updated measurement of the BF of the $B^0_s o ar{D}^{(*)0} \phi\,$ decays
 - Two color-suppressed interfering diagrams with amplitudes similar in size
 - Can be used to measure CKM angle γ ! Chin. Phys. C45 (2021) 023003

<u>Note</u>: The decays used for reconstruction are : $\bar{D}^0 \to K^+\pi^-$, $\phi \to K^+K^-$, $\bar{D}^{*0} \to \bar{D}^0\pi^0$ or $\bar{D}^{*0} \to \bar{D}^0\gamma$

 $(\overline{D}^{(*)0})$

W

400000000000

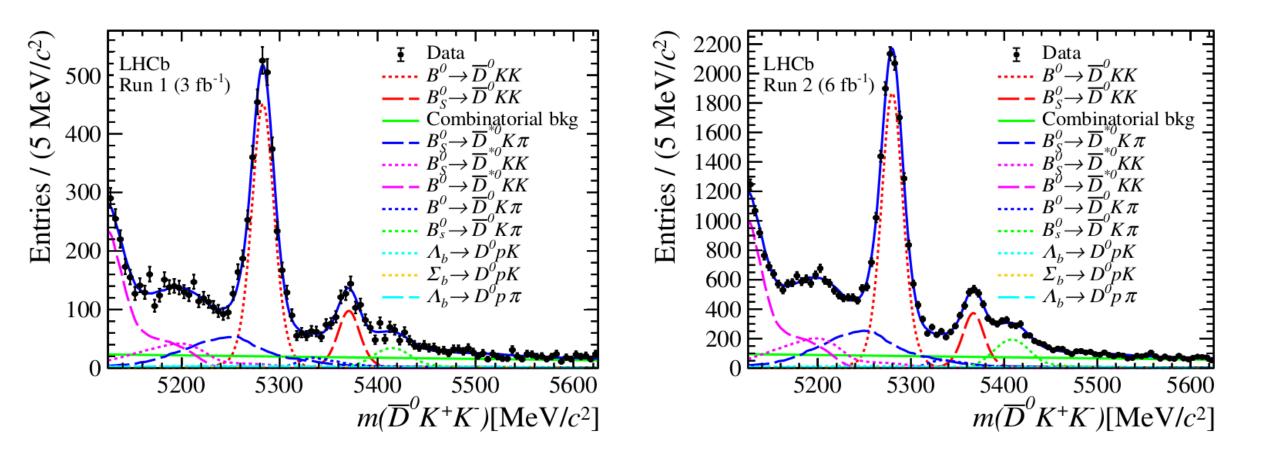

- Aim of this analysis :
 - First evidence for the decay $B^0 o ar{D}^{(*)0} \phi\,$ (Suppressed by the Okubo-Zweig-Iizuka rules)
 - Such mode not been observed in b-hadron yet !
 - Constrain the $\omega-\phi$ mixing angle (with information from $B^0 o D^{(*)0}\omega$)
 - Updated measurement of the BF of the $B^0_s o ar{D}^{(*)0} \phi\,$ decays
 - Two color-suppressed interfering diagrams with amplitudes similar in size
 - Can be used to measure CKM angle γ ! Chin. Phys. C45 (2021) 023003

Parenthesis : The $\omega-\phi$ mixing angle

• The physical states ω and ϕ can be written as a function of the ideally states $\omega^I\equivrac{(uar u+dd)}{\sqrt{2}}\,$ and $\phi^I\equiv sar s$

$$\begin{pmatrix} \omega \\ \phi \end{pmatrix} = \begin{pmatrix} \cos(\delta) & \sin(\delta) \\ -\sin(\delta) & \cos(\delta) \end{pmatrix} \begin{pmatrix} \omega^I \\ \phi^I \end{pmatrix}$$

• The mixing angle can be determined with the branching fractions : $tan^2\delta = \frac{\mathcal{B}(B^0 \to D^{(*)0}\phi)}{\mathcal{B}(B^0 \to \bar{D}^{(*)0}\omega)}$


Integrals of the phase space factors

Input from <u>Phys.Rev.D 98</u>, 071103 (2018)

From current world average

• Angle recently observed in charmonium resonance decays $\chi_{cJ} \rightarrow \omega \phi$ BUT still not in b-hadron decays <u>Phys.Rev.D 99,012015(2019) (BESIII)</u>

• Invariant-mass fit for the decay $B^0 \rightarrow \bar{D}^0 K^+ K^- ==$ Normalisation mode

Branching Fractions of $B^0 o ar{D}^{(*)0} \phi\,$ and $B^0_s o ar{D}^{(*)0} \phi$

Entries / (2 MeV/c²

LHCb

Run 1 (3 fb⁻¹)

Data

 $-\phi \rightarrow K^+ K^-$

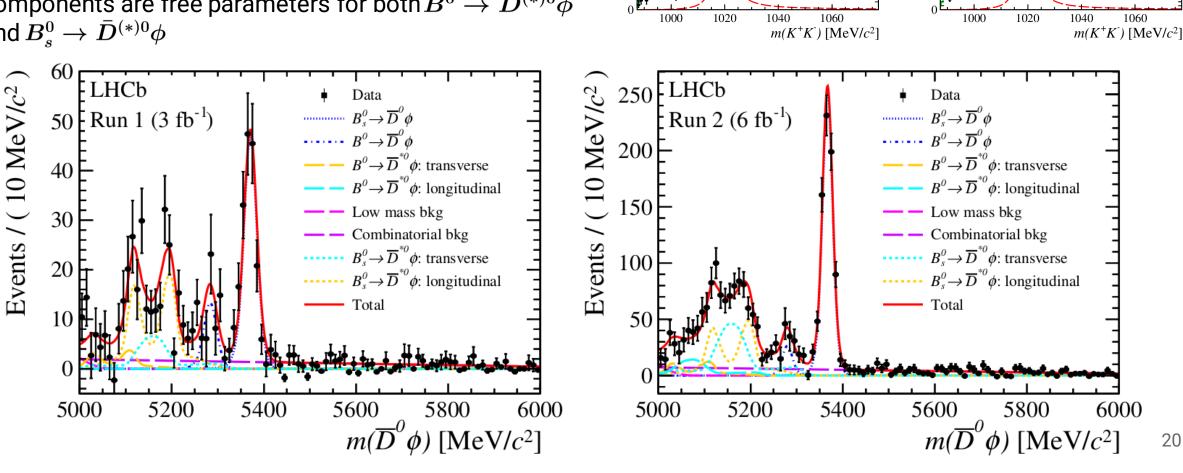
- Background

(2) 400 LHCb 350 Run 2 (

300 F

Entries 200

100


350 Run 2 (6 fb⁻¹)

Data

 $--\phi \rightarrow K^+ K^-$

— – Background

- Invariant-mass fit for the decay $B^0 \rightarrow \bar{D}^0 K^+ K^-$ ٠
- Fit on $m(K^+K^-)$ to remove non ϕ background ٠
- s-Weight method to project on $m(\bar{D^0}\phi)$
- Note that the ratio between transverse and longitudinal ٠ components are free parameters for both $B^0
 ightarrow ar{D}^{(*)0} \phi$ and $B^0_s
 ightarrow ar{D}^{(*)0} \phi$

Branching Fractions of $B^0 o ar{D}^{(*)0} \phi$ and $B^0_s o ar{D}^{(*)0} \phi$

• The results are :

• First evidence for
$$B^0 o \bar{D}^{(*)0} \phi$$

 $\mathcal{B}(B^0 \to \bar{D}^0 \phi) = (7.7 \pm 2.1 \pm 0.7 \pm 0.7) \times 10^{-7} \longrightarrow 3.6\sigma$ significance

 $\mathcal{B}(B^0 \to \bar{D}^{*0}\phi) = (2.2 \pm 0.5 \pm 0.2 \pm 0.2) \times 10^{-6} \longrightarrow 4.3\sigma \text{ significance}$ statistic sytematic from normalisation mode

Branching Fractions of $B^0 o ar{D}^{(*)0} \phi\,\, {
m and}\, B^0_s o ar{D}^{(*)0} \phi$

- The results are :
 - First evidence for $B^0 o \bar{D}^{(*)0} \phi$

 $\mathcal{B}(B^0
ightarrow ar{D}^0 \phi) = (7.7 \pm 2.1 \pm 0.7 \pm 0.7) imes 10^{-7}
ightarrow 3.6\sigma$ significance

 $\mathcal{B}(B^{0} \to \bar{D}^{*0}\phi) = (2.2 \pm 0.5 \pm 0.2 \pm 0.2) \times 10^{-6} \longrightarrow 4.3\sigma \text{ significance}$

- A combined study of the two decay modes gives $\omega-\phi$ mixing angle

 $tan^2\delta = (3.6\pm0.7\pm0.4) imes10^{-3}$ imes consistent with theoretical prediction Phys.Lett.B 666 (2008) 185-188

Branching Fractions of $B^0 o ar{D}^{(*)0} \phi$ and $B^0_s o ar{D}^{(*)0} \phi$

• The results are :

• First evidence for
$$B^0 \to \bar{D}^{(*)0} \phi$$

 $\mathcal{B}(B^0 o ar{D}^0 \phi) = (7.7 \pm 2.1 \pm 0.7 \pm 0.7) imes 10^{-7}
ightarrow 3.6\sigma$ significance

 $\mathcal{B}(B^{0} \to \bar{D}^{*0}\phi) = (2.2 \pm 0.5 \pm 0.2 \pm 0.2) \times 10^{-6} \longrightarrow 4.3\sigma \text{ significance}$ statistic sytematic from normalisation mode

- A combined study of the two decay modes gives $\omega-\phi$ mixing angle

 $tan^2\delta = (3.6 \pm 0.7 \pm 0.4) \times 10^{-3}$ \rightarrow consistent with theoretical prediction Phys.Lett.B 666 (2008) 185-188

• Precision improved for $B_s^0 \to \bar{D}^{(*)0} \phi$ + consistent with previous LHCb results Phys. Rev. D 98, 071103 (2018)

 $egin{aligned} \mathcal{B}(B^0_s o ar{D}^0 \phi) &= (2.30 \pm 0.10 \pm 0.11 \pm 0.20) imes 10^{-5} \ \mathcal{B}(B^0_s o ar{D}^{*0} \phi) &= (3.17 \pm 0.16 \pm 0.17 \pm 0.27) imes 10^{-5} \end{aligned}$ The fraction of the lot $f_L(B^0_s o ar{D}^{*0} \phi)$

The fraction of the longitudinal polarisation of $B^0_s o ar{D}^{*0}\phi$: $f_L(B^0_s o ar{D}^{*0}\phi)=(53.1\pm 6.0\pm 1.9)\%$

Branching Fractions of $B^0 o ar{D}^{(*)0} \phi\,\, {
m and}\, B^0_s o ar{D}^{(*)0} \phi$

• The results are :

• First evidence for
$$B^0 \to \bar{D}^{(*)0} \phi$$

 $\mathcal{B}(B^0 o ar{D}^0 \phi) = (7.7 \pm 2.1 \pm 0.7 \pm 0.7) \times 10^{-7}
ightarrow 3.6\sigma$ significance

 $\mathcal{B}(B^{0} \to \bar{D}^{*0}\phi) = (2.2 \pm 0.5 \pm 0.2 \pm 0.2) \times 10^{-6} \longrightarrow 4.3\sigma \text{ significance}$ statistic sytematic from normalisation mode

- A combined study of the two decay modes gives $\omega-\phi$ mixing angle

• Precision improved for $B_s^0 \to \bar{D}^{(*)0}\phi$ + consistent with previous LHCb results Phys. Rev. D 98, 071103 (2018)

 ${\cal B}(B^0_s o ar D^0 \phi) = (2.30 \pm 0.10 \pm 0.11 \pm 0.20) imes 10^{-5}$

 ${\cal B}(B^0_s o ar D^{*0} \phi) = (3.17 \pm 0.16 \pm 0.17 \pm 0.27) imes 10^{-5}$

The fraction of the longitudinal polarisation of $B^0_s o ar{D}^{*0}\phi$: $f_L(B^0_s o ar{D}^{*0}\phi)=(53.1\pm 6.0\pm 1.9)\%$

This can be used to measure CKM angle γ

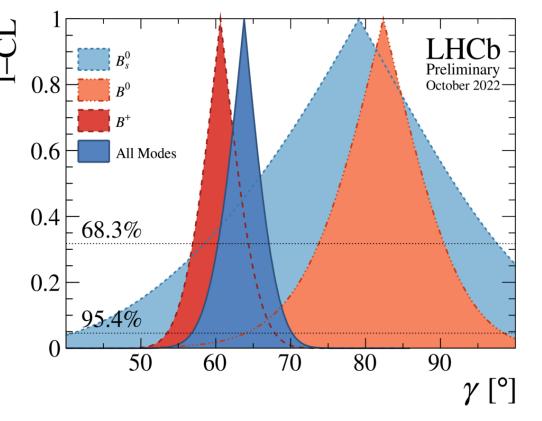
Branching Fractions of $B^0 o ar{D}^{(*)0} \phi$ and $B^0_s o ar{D}^{(*)0} \phi$

• The results are :

First evidence for
$$B^0 \rightarrow \overline{D}^{(*)0}\phi$$

 $\mathcal{B}(B^0 \rightarrow \overline{D}^0\phi) = (7.7 \pm 2.1 \pm 0.7 \pm 0.7) \times 10^{-7}$
 $\mathcal{B}(B^0 \rightarrow \overline{D}^{*0}\phi) = (2.2 \pm 0.5 \pm 0.2 \pm 0.2) \times 10^{-6}$
statistic sytematic from norm

- A combined study of the two decay modes gives ω -


```
tan^2\delta = (3.6 \pm 0.7 \pm 0.4) 	imes 10^{-3}
```

• Precision improved for $B^0_s o ar{D}^{(*)0} \phi$ $\mathcal{B}(B^0_s o ar{D}^0 \phi) = (2.30 \pm 0.10 \pm 0.11 \pm 0.20) imes 10^{-5}$

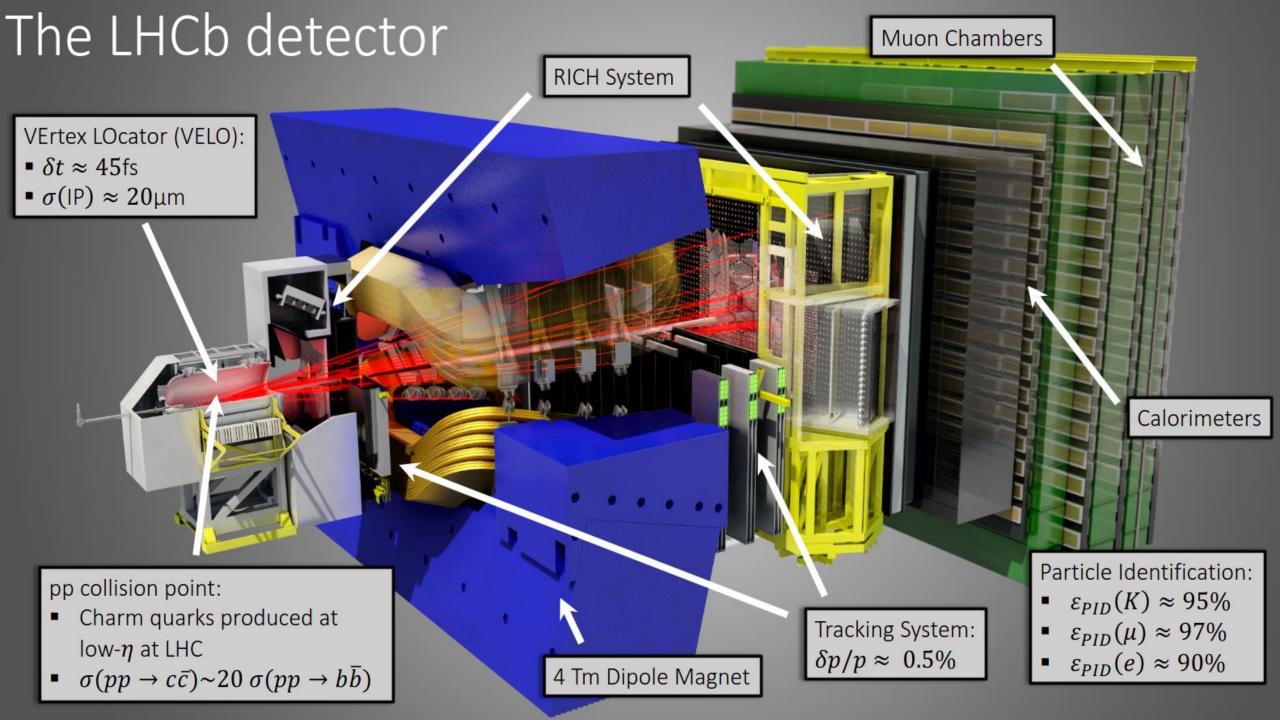
 ${\cal B}(B^0_s o ar D^{*0} \phi) = (3.17 \pm 0.16 \pm 0.17 \pm 0.27) imes 10^{-5}$

- This can be used to measure CKM angle γ
 - Additional methods employing another B_s^0 decay !
 - Notable difference with $B_s^0
 ightarrow D_s K$ JHEP 03 (2018) 059 : No tagging and pure final state
 - Expected sensitivity on y with this decay is about 8° to 19° with LHCb dataset <u>Chin. Phys. C45 (2021) 023003</u> ²⁵

<u>**Reminder</u>:** \mathbf{y} not yet accurately measured in B_s^0 </u>

• New combination of LHCb results gives the most precise determination of γ

$$\gamma = (63.8^{+3.5}_{-3.7})^{\circ}$$


- First study of the CP violation with the channel $B^{\pm} \rightarrow [h^+h^-\pi^+\pi^-]_D h^{\pm}$
 - Both with a D phase-space binning scheme and integrated
 - To be improved after BESIII strong-phase measurements
- First evidence for $B^0 o \bar{D}^{(*)0} \phi$
- Branching fraction precision improved for $B_s^0 \to \overline{D}^{(*)0}\phi$ -> Possible γ measurement (Stay tuned !)
- Coming soon (or later) :
 - Studies of new decay modes
 - Updates with Run3 data set (expected 23fb⁻¹) -> Room for improvement as all measurements are still limited by statistics

New combination of LHCb results gives the most precise determination of χ ٠ Thank you for your attention!

$$\gamma = (63.8^{+3.5}_{-3.7})^\circ$$

- First study of the CP violation with the channel $B^{\pm} \rightarrow [h^+h^-\pi^+\pi^-]_D h^{\pm}$
 - Both with a D phase-space binning scheme and integrated
 - To be improved after BESIII strong-phase measurements •
- First evidence for $B^0 \to \overline{D}^{(*)0}\phi$
- Branching fraction precision improved for $B_s^0 \to \overline{D}^{(*)0}\phi$ -> Possible γ measurement (Stay tuned !) ٠
- Coming soon (or later) :
 - Studies of new decay modes
 - Updates with Run3 data set (expected 23fb⁻¹) -> Room for improvement as all measurements are still limited by statistics

LHCb ¥ combination

Table 2: Auxiliary inputs used in the combination. Those highlighted in bold have changed since the previous combination 14.

Decay	Parameters	Source	Ref.	Status since
				Ref. [14]
$B^\pm \to D K^{*\pm}$	$\kappa^{DK^{*\pm}}_{B^{\pm}}$	LHCb	[33]	As before
$B^0 \to DK^{*0}$	$\kappa^{DK^{*0}}_{B^0}$	LHCb	53]	As before
$B^0 \to D^{\mp} \pi^{\pm}$	β	HFLAV	[13]	As before
$B^0_s \to D^\mp_s K^\pm(\pi\pi)$	ϕ_s	HFLAV	[13]	As before
$D \to K^+ \pi^-$	$\cos \delta_D^{K\pi}$, $\sin \delta_D^{K\pi}$, $(r_D^{K\pi})^2$, x^2 , y	CLEO-c	[27]	New
$D \to K^+ \pi^-$	$A_{K\pi}, A_{K\pi}^{\pi\pi\pi^{0}}, r_{D}^{K\pi} \cos \delta_{D}^{K\pi}, r_{D}^{K\pi} \sin \delta_{D}^{K\pi}$	BESIII	28]	New
$D \to h^+ h^- \pi^0$	$F^{+}_{\pi\pi\pi^{0}}, F^{+}_{KK\pi^{0}}$	CLEO-c	[54]	As before
$D \to \pi^+\pi^-\pi^+\pi^-$	$F_{4\pi}^+$	CLEO-c+BESIII	[26, 54]	Updated
$D \to K^+ \pi^- \pi^0$	$r_D^{K\pi\pi^0}, \delta_D^{K\pi\pi^0}, \kappa_D^{K\pi\pi^0}$	CLEO-c+LHCb+BESIII	55 - 57	As before
$D \to K^\pm \pi^\mp \pi^+ \pi^-$	$r_D^{K3\pi}, \delta_D^{K3\pi}, \kappa_D^{K3\pi}$	CLEO-c+LHCb+BESIII	49,55-57	As before
$D \to K^0_{\rm S} K^{\pm} \pi^{\mp}$	$r_D^{K_{\rm S}^0 K \pi}, \delta_D^{K_{\rm S}^0 K \pi}, \kappa_D^{K_{\rm S}^0 K \pi}$	CLEO	58]	As before
$D \rightarrow K^0_S K^{\pm} \pi^{\mp}$	$r_D^{K_S^0K\pi}$	LHCb	59]	As before

Table 4: Confidence intervals and best-fit values for γ when splitting the combination inputs by initial *B* meson species, computed using the Feldman-Cousins *Plugin* method [63].

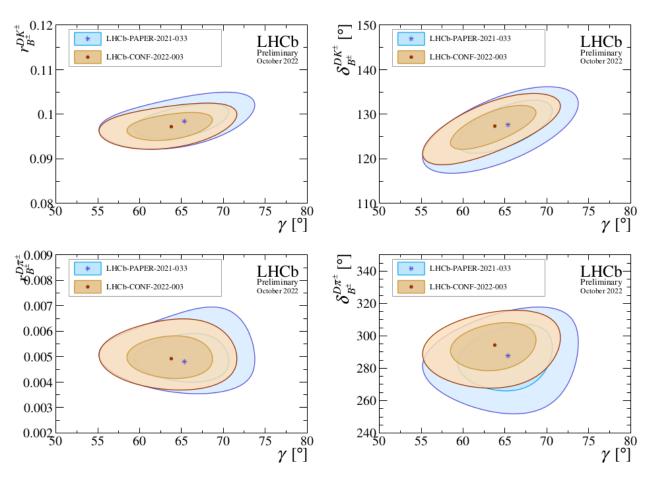

Species	Value [°]	68.3% CL		95.4% CL	
species		Uncertainty	Interval	Uncertainty	Interval
B^+	60.6	$^{+4.0}_{-3.8}$	[56.8, 64.6]	$^{+7.8}_{-7.5}$	[53.1, 68.4]
B^0	82.0	$^{+8.1}_{-8.8}$	[73.2, 90.1]	$^{+17}_{-18}$	[64, 99]
B_s^0	79	$^{+21}_{-24}$	[55, 100]	$^{+51}_{-47}$	[32, 130]

Table 3: Confidence intervals and central values for each of the parameters of interest, computed using the Feldman-Cousins *Plugin* method **63**. Entries marked with an asterisk show where the scan has hit a physical boundary at the lower limit.

Ouentitu	Value 68		.3% CL	95.4% CL	
Quantity	value	Uncertainty	Interval	Uncertainty	Interval
$\gamma[^{\circ}]$	63.8	$^{+3.5}_{-3.7}$	[60.1, 67.3]	$^{+6.9}_{-7.5}$	[56.3, 70.7]
$r_{B^{\pm}}^{DK^{\pm}}$	0.0972	+0.0022 -0.0021	$\left[0.0951, 0.0994 ight]$	+0.0045 -0.0042	$\left[0.0930, 0.1017 ight]$
$\delta^{DK^{\pm}}_{B^{\pm}}[^{\circ}]$	127.3	$^{+3.4}_{-3.5}$	[123.8, 130.7]	$^{+6.5}_{-7.3}$	[120.0, 133.8]
$r_{B^{\pm}}^{D\pi^{\pm}}$	0.00490	+0.00059 -0.00053	$\left[0.00437, 0.00549\right]$	$^{+0.0013}_{-0.0010}$	[0.0039, 0.0062]
$\delta_{B^{\pm}}^{D\pi^{\pm}}[\circ]$	294.0	$^{+9.7}_{-11}$	[283, 303.7]	$^{+19}_{-22}$	[272, 313]
$r_{B^{\pm}}^{D^*K^{\pm}}$	0.098	$^{+0.017}_{-0.019}$	[0.079, 0.115]	$^{+0.031}_{-0.037}$	[0.061, 0.129]
$\delta_{B^{\pm}}^{D^*K^{\pm}}$ [°]	308	$^{+12}_{-25}$	[283, 320]	$^{+21}_{-69}$	[239, 329]
$r_{B^{\pm}}^{D^{*}\pi^{\pm}}$	0.0091	+0.0081 -0.0056	[0.0035, 0.0172]	$^{+0.016}_{-0.0085}$	[0.0006, 0.025]
$\delta_{B^{\pm}}^{D^*\pi^{\pm}}[^\circ]$	137	$^{+22}_{-83}$	[54, 159]	$^{+32}_{-130}$	[7, 169]
$r_{P^{\pm}}^{DK^{*\pm}}$	0.108	$^{+0.016}_{-0.019}$	[0.089, 0.124]	$^{+0.030}_{-0.039}$	[0.069, 0.138]
$\delta_{B^{\pm}}^{DK^{*\pm}}[^{\circ}]$	34	$^{+20}_{-15}$	[19, 54]	$^{+54}_{-28}$	[6, 88]
$r_{B^0}^{DK^{*0}}$	0.249	+0.022 -0.025	[0.224, 0.271]	$^{+0.044}_{-0.051}$	[0.198, 0.293]
$\delta_{B^0}^{DK^{*0}}[\circ]$	198	$^{+10}_{-9.6}$	[188.4, 208]	$^{+24}_{-19}$	[179, 222]
$r_{B_s^0}^{D_s^{\mp}K^{\pm}}$	0.310	$^{+0.096}_{-0.094}$	[0.216, 0.406]	$^{+0.20}_{-0.22}$	[0.09, 0.51]
$r_{B_s^0} \delta_{B_s^{\eta_{\pm}}K^{\pm}}^{D_s^{\mp}K^{\pm}} [\circ]$	356	$^{+19}_{-18}$	[338, 375]	$^{+39}_{-38}$	[318, 395]
$r_{B_{e}^{0}}^{D_{s}^{+}K^{\pm}\pi^{+}\pi^{-}}$	0.460	$^{+0.081}_{-0.085}$	[0.375, 0.541]	$^{+0.16}_{-0.17}$	[0.29, 0.62]
$\delta_{B^0_s}^{\vec{D}^{\mp}_s K^{\pm} \pi^+ \pi^-} [^{\circ}]$	346	$^{+12}_{-12}$	[334, 358]	$^{+26}_{-25}$	[321, 372]
$r_{B^0}^{D^{\mp}\pi^{\pm}}$	0.030	$^{+0.016}_{-0.012}$	[0.018, 0.046]	$^{+0.041}_{-0.027}$	[0.003, 0.071]
$\delta^{D^{\mp}\pi^{\pm}}_{B^{0}}[^{\circ}]$	32	$^{+26}_{-40}$	[-8, 58]	$^{+45}_{-86}$	[-54, 77]
$r_{B^{\pm}}^{DK^{\pm}\pi^{+}\pi^{-}}$	0.079	$^{+0.028}_{-0.034}$	[0.045, 0.107]	$^{+0.049}_{-0.079}$	$[0.000, 0.128]^*$
$r_{B^{\pm}}^{D\pi^{\pm}\pi^{+}\pi^{-}}$	0.068	$^{+0.026}_{-0.030}$	[0.038, 0.094]	$^{+0.039}_{-0.068}$	$[0.000, 0.107]^*$
x[%]	0.398	$^{+0.050}_{-0.049}$	[0.349, 0.448]	$^{+0.099}_{-0.10}$	[0.30, 0.497]
y[%]	0.636	$^{+0.020}_{-0.019}$	[0.617, 0.656]	$^{+0.041}_{-0.039}$	[0.597, 0.677]
$r_D^{K\pi}[\%]$	5.865	$^{+0.014}_{-0.015}$	[5.850, 5.879]	$^{+0.029}_{-0.030}$	[5.835, 5.894]
$\delta_D^{K\pi}[\circ]$	190.2	$^{+2.8}_{-2.8}$	[187.4, 193.0]	$^{+5.6}_{-6.1}$	[184.1, 195.8]
q/p	0.995	$^{+0.015}_{-0.016}$	[0.979, 1.010]	$^{+0.032}_{-0.032}$	[0.963, 1.027]
$\phi[^{\circ}]$	-2.5	$^{+1.2}_{-1.2}$	[-3.7, -1.3]	$^{+2.4}_{-2.5}$	[-5.0, -0.1]
$a^{\mathrm{d}}_{K^+K^-} [\%]$	0.090	$^{+0.057}_{-0.057}$	[0.033, 0.147]	$^{+0.11}_{-0.12}$	[-0.03, 0.20]
$a^{\rm d}_{\pi^+\pi^-}[\%]$	0.240	$^{+0.061}_{-0.062}$	[0.178, 0.301]	$^{+0.12}_{-0.12}$	[0.12, 0.36]

30

LHCb **Y** combination

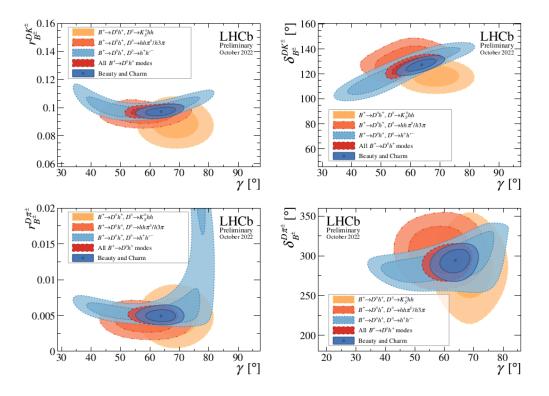


Figure 4: Profile likelihood contours for the components which contribute towards the γ part of the combination, showing the breakdown of sensitivity amongst different sub-combinations of modes. The contours shown are the two-dimensional 1σ and 2σ contours which correspond to the areas containing 68.3% and 95.4% of the distribution.