

Experimental results on Lepton Flavor Universality

Keith Ulmer

University of Colorado Boulder

on behalf of the CMS and ATLAS Collaborations

Lepton Flavor Universality

 No observed transitions coupling charged leptons from different generations (ex. H → eµ)

- But why not?
 - Weak force mixes quarks of different generations
 - Neutrino mixing shows lepton flavor violation in neutral leptons

Lepton Flavor Violation

- Neutrino mixing does allow LFV in SM
 - But at rates far below current experimental sensitivity
- New physics contributions can significantly enhance LFV rates
- Recent "flavor anomalies" have driven renewed interest in searches for LFV
 - Many related high-mass searches (Z', leptoquarks, etc.) not covered here

(see G. Padovano, H. Saka, E. Vourliotis)

LFV in Higgs and Z Decays

- Classic charged LFV search at the LHC
 - Z and Higgs decays in $e\mu$, $e\tau$, and $\mu\tau$ final states
 - Clean signature with triggerable high p_T leptons
 - Similar searches from CMS and ATLAS

- Select events with two opposite charge leptons with different flavor
 - Include hadronic and leptonic tau decays
- Separate templates for different production channels for Higgs

$Z \rightarrow e\mu$ Search

- Boosted Decision Tree from kinematic and lepton ID variables
- Fit to $e\mu$ mass to extract signal
- Normalize $e\mu$ search to Drell Yan events

Higgs $\rightarrow \tau \ell$ Search

arXiv:2302.05225

- Separate search channels for VBF and non-VBF Higgs production
- Combine limits from all channels

- Mass peak less sharp due to neutrinos in tau decays
- MVA-based tau ID with fake rate measured in data control regions
- Multiple background methods used to cross check

Summary of H/Z limits

- No signal observed in any channel
- Interpret results as 95% CL upper limits

95% CL UL	ATLAS	CMS
$H \rightarrow e\mu$	6.2 * 10 ⁻⁵ PLB 801 (2020) 135148	4.4 * 10 ⁻⁵ PAS-HIG-22-002
$H \rightarrow e\tau$	2.0 * 10 ⁻³ 2302.05225	2.2 * 10 ⁻³ PRD 104, 032013 (2021)
$H \rightarrow \mu \tau$	1.8 * 10 ⁻³ 2302.05225	1.5 * 10 ⁻³ PRD 104, 032013 (2021)
$Z \rightarrow e\mu$	2.6 * 10 ⁻⁷ 2204.10783	
Z → eτ	8.1 * 10 ⁻⁶ Nature Phys 17, 819 (2021)	
$Z \rightarrow \mu \tau$	9.5 * 10 ⁻⁶ Nature Phys 17, 819 (2021)	

Near Higgs eµ Search

 CMS H → eµ search also scanned around the Higgs mass

Possible sign of structure ~146 GeV

+ 2.8 (3.8) σ global (local) significance

LFV in Top Decays

- Search for LFV in vertex coupling 2 flavors of leptons and quarks (ex: e, μ, t, c)
 - Possible in both production and decay of top quarks

- Select events with
 - Opposite charge e/μ pair plus additional charged lepton
 - ≥ 1 jet with no more than 1 tagged as b
- Build SM top candidate from most b-like jet, extra lepton, and MET
- Build BSM top candidate from opposite charge e/μ pair and jet that gives mass closest to the top
- Divide signal region into m(eµ) > and < 150 GeV to target production/decay regions

Top Background Predictions

- Prompt backgrounds from SM processes with three real leptons (di- and tri-boson production)
 - Estimated from MC simulation
- Non-prompt backgrounds from one or more non-prompt leptons (b, c or π decays)
 - Estimated from tight-to-loose ratio measured and validated in data
- Boosted Decision Trees trained to discriminate signal from background

PAS-TOP-22-005

Top LFV Interpretations

ATLAS- CONF-2023-001

- Interpret as constraints on BSM Wilson coefficients and limits on top branching fractions
- Search in similar channel with τ leptons from ATLAS

Process	$m(e\mu) < 150 \mathrm{GeV}$	$m(e\mu) > 150 \text{GeV}$
Nonprompt	351 ± 92	146 ± 38
WZ	275 ± 64	145 ± 35
ZZ	33.2 ± 6.5	13.1 ± 2.6
VVV	17.0 ± 8.5	12.0 ± 6.0
tīW	47.6 ± 10.0	40.0 ± 9.1
tīZ	39.1 ± 7.9	25.8 ± 5.4
tīH	28.2 ± 4.5	10.0 ± 1.6
tZq	5.5 ± 1.1	2.5 ± 0.5
Other backgrounds	7.3 ± 3.7	4.5 ± 2.3
Total expected background	805 ± 123	398 ± 57
Data	783	378
CLFV	239 ± 14	6195 ± 305

	95% CL upper limits on BR($t \rightarrow \mu \tau q$)	
	Stat. only	All systematics
Expected	8×10^{-7}	10×10^{-7}
Observed	9×10^{-7}	11×10^{-7}

High Mass LFV Decays

- New for LHCP 20. Variety of New Physics models can produce heavy resonances decaying to lepton pairs (ex: Z')
 - If LFV couplings are included, can expect $Z' \rightarrow e\mu$, $e\tau$, and/or $\mu\tau$
 - Select different flavor lepton pairs with $p_{T} > 65$ GeV
 - Include taus in 1 or 3 prong hadronic channels
 - Target dilepton mass > 600 GeV and exactly 2 leptons back-to-back
 - For tau channels, neutrino direction assumed same as visible tau components
 - Achieves mass resolution of 4% for $e\tau$ and 12% for $\mu\tau$ for 2 TeV benchmark Z'

High Mass LFV Backgrounds

- Irreducible
 - SM processes with true opposite charge different flavor leptons (diboson, tt, Z→ττ)
 - Estimated from MC simulation corrected by data in backgroundenriched control regions
- Reducible
 - Jets misreconstructed as leptons (W+jets, multijet)
 - Non-prompt e or µ estimated from data with tight-to-loose ratio method
 - Jet faking hadronic τ derived scaling background-enriched control region yield by SR/CR ratio from simulation

EXOT-2019-20

High Mass Results

EXOT-2019-20

Diboson

Fake

Top Quarks

Drell-Yan

Uncertainty⁻

10

m_{uτ} [GeV]

PAS-EXO-19-014

5% CL lim

± 2 s.d.

edian expected li ± 1 s.d.

137.1 fb⁻¹ (13 TeV)

- Interpret results as limits on variety of BSM models: Z', RPV sneutrinos, quantum black holes
- Interesting excess ~2 σ in highest mass bin in $e\tau$ and $\mu\tau$ channels
- Similar search performed by CMS \rightarrow no sign of excess visible in sneutrino limits

4000

m_v (GeV)

LFV in tau Decays

- New for LHCP 202: Search for LFV $\tau \rightarrow 3\mu$ decays
 - New: add 2017–2018 data
 - Include τ production from heavy flavor (B, D) decays and W decays
 - W $\rightarrow \tau, \nu$ results in high $p_T \tau$
 - Muon $p_T > 7$, 1, 1 GeV fit to common vertex
 - ▶ p_T(3µ) > 15 GeV
 - BDT to separate signal (MC) vs background (data sidebands)
 - W decay: MET, tau p_τ, etc.
 - $\tau \rightarrow 3\mu$ vertex: χ^2 , pointing angle
 - Muon identification
 - Split into three categories based on 3μ mass resolution

$\tau \rightarrow 3\mu$ Heavy Flavor Production

- Fit 3 low p_T muons to common displaced vertex
- Background dominated by pion or kaon decay-in-flight and hadron tracks matching muon stubs → use muon quality BDT
- Divide into three categories of 3µ mass resolution (~12, 19, 25 MeV)
- Second event-level BDT trained to select signal vs background
 - Divide into 4 bins and fit the 3µ mass to extract signal in 3 most signal-like bins
- Signal normalized to $D_S^+ \rightarrow \phi(\mu^+\mu^-)\pi^+$ to minimize dependence on B or D cross sections and muon selection efficiencies

LFV in tau Decays

- No signal observed
- Final results extracted from simultaneous fit to all new signal regions, plus previous 2016 results
- $\mathcal{B}(\tau \rightarrow 3\mu) < 2.9 \times 10^{-8}$ at 90% CL
 - ♦ World's best still from B-factories: Belle < 2.1 × 10⁻⁸

Conclusions

- Lepton Flavor Violation in charged lepton sector is an intriguing arena to search for new physics
- The LHC has world's best sensitivity to many LFV channels including Z, Higgs, and Top decays and high mass searches
- No clear signs of LFV yet, but several interesting hints to be followed up with more data
- Especially important as the picture for heavy flavor anomalies continues to become more clear

Additional Slides

CMS High Mass Mass plots of CMS High Mass search

