Quarkonium production cross section and polarisation

Andry Rakotozafindrabe

on behalf of the ALICE, ATLAS, CMS and LHCb collaborations

Quarkonium production @ LHC : a vivid QCD laboratory

- Charmonium or bottomonium : a bound state of a heavy quark (c or b) and its antiquark
- Prompt production
 - *direct* (no feed-down at all) or from *higher resonance* (in family) *feed-down*
- Non-prompt production
 - charmonium produced via **b-hadron feed-down**
 - access to open beauty production, for e.g. study the elusive $B_c^{(*)}(2\mathrm{S})^+$ CMS [PRD 102 (2020) 9, 092007]

Quarkonium production @ LHC : a vivid QCD laboratory

- Charmonium or bottomonium : a bound state of a heavy quark (c or b) and its antiquark
- Prompt production
 - direct (no feed-down at all) or from higher resonance (in family) feed-down
- Non-prompt production
 - charmonium produced via b-hadron feed-down
 - access to open beauty production, for e.g. study the elusive $B_c^{(*)}(2S)^+$ CMS [PRD 102 (2020) 9, 092007]
- Long standing challenge (theory/data) to understand the prompt production mechanism
 - perturbative: initial $q\bar{q}$ production

2 scale problem: factorisation approach

non-perturbative: binding into physical quarkonium (hadronisation)

Quarkonium production @ LHC : a vivid QCD laboratory

- Charmonium or bottomonium : a bound state of a heavy quark (c or b) and its antiquark
- Prompt production
 - direct (no feed-down at all) or from higher resonance (in family) feed-down
- Non-prompt production
 - charmonium produced via **b-hadron feed-down**
 - access to open beauty production, for e.g. study the elusive $B_c^{(*)}(2S)^+$ CMS [PRD 102 (2020) 9, 092007]
- Long standing challenge (theory/data) to understand the prompt production mechanism

 \sim perturbative: initial $q\bar{q}$ production

2 scale problem: <u>non-perturbative</u>: binding into physical quarkonium (hadronisation)

- Quarkonium production used as a tool to study: [Prog.Part.Nucl.Phys. 122 (2022) 103906]
 - gluon content of the proton/nucleus [See talk by J. G. Contreras Nuno Heavy Ion Physics session, 25/05 16:12]
 - associated production of quarkonium pairs [See talk by Y. Wei QCD Physics session, 25/05 14:47]
 - quark-gluon plasma [See talks by P. Gossiaux and C. Hadjidakis Joint Heavy Ion + Flavour session, 23/05 11:30]
 - multiple-parton scattering interactions
 - spectroscopy (exotic quarkonium states)

[Rev.Mod.Phys. 90 (2018) 1, 015003]

Prompt J/ ψ , ψ (2S) p_T spectra : from low to high p_T

 $\sqrt{s} = 13 \text{ TeV}$, mid-y

ICEM, Cheung et al. [PRD 98 (2018) 11, 114029]

Prompt J/ ψ , ψ (2S) p_T spectra : from low to high p_T

Prompt J/ ψ , ψ (2S) p_T spectra : from low to high p_T

► High precision measurements challenge models over a very wide *p*_T range

Non-prompt $J/\psi p_T$ spectra

LHCb [JHEP 11 (2021) 181]

Non-prompt $J/\psi p_T$ spectra

Non-prompt $J/\psi p_T$ spectra

► J/ ψ ← b : FONLL expectations are compared to measured p_T spectra at different \sqrt{s} and y

- Tend to overestimate the data at very high $p_{\rm T}$

Polarisation of P-wave charmonia $\sqrt{s} = 8 \text{ TeV}$

• Within NRQCD, χ_{c1} and χ_{c2} polarisations can be predicted with a single CO (color octet) parameter from χ_{c2}/χ_{c1} cross-section ratio NRQCD prediction Faccioli et al. [EPJ C 78 (2018) 3, 268]

• « Relative » polarisation study of χ_{c2} vs χ_{c1}

CMS [PRL 124 (2020) 16, 162002]

angular dependences of the χ_{c2}/χ_{c1} yield ratio

Polarisation of P-wave charmonia $\sqrt{s} = 8 \text{ TeV}$

- Within NRQCD, χ_{c1} and χ_{c2} polarisations can be predicted with a single CO (color octet) parameter from χ_{c2}/χ_{c1} cross-section ratio NRQCD prediction Faccioli et al. [EPJ C 78 (2018) 3, 268]
- « Relative » polarisation study of χ_{c2} vs χ_{c1}

CMS [PRL 124 (2020) 16, 162002]

Unpolarised scenario and a sizeable part of the physically allowed region (red rectangle) are excluded at 99.7% CL

Nature of the exotic $\chi_{c1}(3872)$?

Test binding strength and radius via final state effects dependent on the hadronic environment (multiplicity) generated at the primary vertex $\sqrt{s} = 8 \text{ TeV}$

- Prompt χ_{c1}(3872) / ψ(2S) ratio decreases with multiplicity.
 Under different assumptions, such behaviour would emerge from opposite scenarios:
 - > a compact tetraquark in the model (1)
 - > a large molecule of neutral charm mesons in the model (2)

LHCb [PRL 126 (2021) 9, 092001] Esposito et al. [Eur.Phys.J.C 81 (2021) 7, 669]

(1) Esposito et al. [Eur.Phys.J.C 81 (2021) 7, 669]
 (2) Braaten et al. [Phys.Rev.D 103 (2021) 7, L071901]

Nature of the exotic $\chi_{c1}(3872)$?

Test binding strength and radius via final state effects dependent on the hadronic environment (multiplicity) generated at the primary vertex $\sqrt{s} = 8 \text{ TeV}$

- > a compact tetraquark in the model (1)
- a large molecule of neutral charm mesons in the model (2)

(1) Esposito et al. [Eur.Phys.J.C 81 (2021) 7, 669]
 (2) Braaten et al. [Phys.Rev.D 103 (2021) 7, L071901]

LHCb [JHEP 01 (2022) 131] NLO NRQCD, Meng et al. [Phys.Rev.D 96 (2017) 7, 074014]

Prompt $\chi_{c1}(3872)$ production vs p_T

For $p_T > 10$ GeV/c, agreement with NLO NRQCD predictions which model the $\chi_{c1}(3872)$ state as a mixture of $\chi_{c1}(2P)$ and $D^0 \overline{D}^{*0}$ molecule states

$$\sqrt{s} = 13 \text{ TeV}$$

Y(1S), (2S), (3S) : *p*_T spectra √s = 13 TeV

• New preliminary results released by ALICE, compatible with LHCb measurements

ALICE preliminary LHCb [JHEP 07 (2018) 134]

Y(1S) polarisation $\sqrt{s} = 8$, 13 TeV, forward-y

- LHCb results: close to an isotropic decay
 - $\lambda_{\theta\varphi}$ and λ_{φ} parameters are very close to zero, λ_{θ} parameter is slightly above zero
- Recent preliminary results released by ALICE aggregates pp dataset collected in 2016, 2017 and 2018
 - Compatible with LHCb measurements
 - Evaluated down to $\sim \text{zero } p_T$
 - Limited by the statistical precision

Y(nS) production : dynamics in the underlying event

Mean number of charged particles with $0.5 < p_T < 10$ GeV/c and $|\eta| < 2.5$ in events with Y(nS)

CMS [JHEP 11 (2020) 001]

Y(nS) production : dynamics in the underlying event

Mean number of charged particles with $0.5 < p_T < 10$ GeV/c and $|\eta| < 2.5$ in events with Y(nS)

CMS [JHEP 11 (2020) 001]

• At a given $p_{\rm T}^{\mu\mu}$, there is a deficit of charged particles in the events with excited states

Y(nS) production : dynamics in the underlying event

Mean number of charged particles with $0.5 < p_T < 10$ GeV/c and $|\eta| < 2.5$ in events with Y(nS)

CMS [JHEP 11 (2020) 001]

- At a given $p_{\rm T}^{\mu\mu}$, there is a deficit of charged particles in the events with excited states
- Large differences across $\Upsilon(nS)$ states at low p_T are:
 - > reduced at high p_T
 - > unexpected with PYTHIA event generator

Comovers, Ferreiro [PLB 749 (2015) 98] 3-pomeron CGC, Levin et al. [EPJ C 80 (2020) 6, 560] CPP, Kopeliovich et al. [PRD 101 (2020) 5, 054023]

ALICE [arXiv:2209.04241]

CMS [JHEP 11 (2020) 001]

• Test any final state (break-up ?) effect dependent on the multiplicity by removing most initial state effects in the ratios

Higher mass states have a lower binding energy w.r.t. the ground state

 $\sqrt{s} = 13 \text{ TeV}$

Challenge soft particle production (underlying event, multiple-parton scatterings, small system hydrodynamics, ...) and its simultaneous interplay with hard process (quarkonium production) in the models

- Challenge soft particle production (underlying event, multiple-parton scatterings, small system hydrodynamics, ...) and its simultaneous interplay with hard process (quarkonium production) in the models
 - > $\Upsilon(nS)$, N_{ch} : what if there is a rapidity gap?

- Challenge soft particle production (underlying event, multiple-parton scatterings, small system hydrodynamics, ...) and its simultaneous interplay with hard process (quarkonium production) in the models
 - > $\Upsilon(nS)$, N_{ch} : what if there is a rapidity gap?
- ALICE to CMS comparison: dataset collected during Run 2
 - ➡ Very interesting prospects in Run 3 !

Associated production : triple J/ ψ $\sqrt{s} = 13 \text{ TeV}$

- Observation of simultaneous production of three J/ ψ in pp collisions with stat. significance > 5 σ
- Cross-section $272^{+141}_{-101}(\text{stat}) \pm 17(\text{syst}) \text{ fb}, |y_{J/\psi}| < 2.4$

Associated production : triple J/ ψ $\sqrt{s} = 13 \text{ TeV}$

CMS [NP 19 (2023) 3, 338]

- Observation of simultaneous production of three J/ ψ in pp collisions with stat. significance > 5 σ
- Cross-section $272^{+141}_{-101}(\text{stat}) \pm 17(\text{syst}) \text{ fb}, |y_{J/\psi}| < 2.4$
- Process dominated by double (DPS) and triple (TPS) parton scatterings, minimal « contamination » from single (SPS) parton scattering
 - efficient probe of the gluon density in the proton and its fast evolution with \sqrt{s}

TPS : dominant processes

SPS : dominant process DPS : dominant processes

Associated production : triple J/ ψ $\sqrt{s} = 13 \text{ TeV}$

• Extracted $\sigma_{\text{eff,DPS}} \propto$ average (squared) transverse separation of the partons involved in the DPS

$$\sigma_{\rm DPS}^{\rm pp \to ab} = \left(\frac{m}{2}\right) \frac{\sigma_{\rm SPS}^{\rm pp \to a} \cdot \sigma_{\rm SPS}^{\rm pp \to b}}{\sigma_{\rm eff, DPS}}$$

- consistent with values derived from processes mostly induced by gluon-gluon scatterings

CMS [NP 19 (2023) 3, 338]

Associated production : Y(1S) pair production and search

for resonances $\sqrt{s} = 13 \text{ TeV}$ *CMS [PLB 808 (2020) 135578]*

- $\Upsilon(1S)$ pair production observed in 4μ
- Measured ross-section (for unpolarised mesons) :

$79 \pm 11(\text{stat}) \pm 6(\text{syst}) \pm 3(\mathcal{B}) \,\text{pb}$

First measurement of DPS contribution to di- $\Upsilon(1S)$ production :

 $f_{\rm DPS} = (39 \pm 14)\%$

Associated production : Y(1S) pair production and search for resonances $\sqrt{s} = 13 \text{ TeV}$

 Search for unknown resonance X, considering di-Y(1S) production as background

 $X \to \Upsilon(1S)\mu\mu$ $\downarrow \mu\mu$

- X : tetraquark, scalar, pseudoscalar, or spin-2 state
- With an estimated mass :

$$\widetilde{m}_{4\mu} = m_{4\mu} - m_{\mu\mu} + m_{\Upsilon(1S)}$$

• No excess of events compatible with signal is observed in the $\widetilde{m}_{4\mu}$ distribution

- Test CO LDMEs when the associated production proceeds via SPS
- The measured p_T spectra, which cumulate SPS and DPS, steered many questions :

ATLAS [JHEP 01 (2020) 095]

- Test CO LDMEs when the associated production proceeds via SPS
- The measured p_T spectra, which cumulate SPS and DPS, steered many questions :
 - overlooked CS (color singlet) contribution ?

ATLAS [JHEP 01 (2020) 095]

- Test CO LDMEs when the associated production proceeds via SPS
- The measured p_T spectra, which cumulate SPS and DPS, steered many questions :
 - overlooked CS (color singlet) contribution ?
 - uncertainties on the DPS contribution ?

- Test CO LDMEs when the associated production proceeds via SPS
- The measured p_T spectra, which cumulate SPS and DPS, steered many questions :
 - overlooked CS (color singlet) contribution ?
 - uncertainties on the DPS contribution ?

- Test CO LDMEs when the associated production proceeds via SPS
- The measured p_T spectra, which cumulate SPS and DPS, steered many questions :
 - overlooked CS (color singlet) contribution ?
 - uncertainties on the DPS contribution ?
 - improve NRQCD framework ? improve LDME extraction ?

ATLAS [JHEP 01 (2020) 095]

NLO NRQCD SPS prediction, Song et al. [Chin.Phys.Lett. 30 (2013) 091201] using LDMEs from Chao et al. [PRL 108 (2012) 242004] extracted from simultaneous fit of differential cross section and polarisation of prompt J/ψ at the Tevatron

pNRQCD, Brambilla et al. [JHEP 03 (2023) 242]

- P-wave charmonia feed-down are included
- Computation of LDMEs in pNRQCD formalism takes advantage of some additional symmetries, reducing the number of non-perturbative unknowns.
- LDMEs extracted from joint fit of LHC data of prompt J/ψ, ψ(2S), Υ(2S) and Υ(3S)

Summary

- Today : a short selection of recent LHC results on hidden charm and beauty in the quarkonium system in pp collisions
- This QCD laboratory provides :
 - stringent contraints on the available models of the quarkonium production mechanism
 - harvest of results involving rare multi-parton scattering processes now accessible with LHC energy and luminosity
 - exploratory means to search for and study exotic resonances
- Looking forward to upcoming results from LHC Run 3 !

Thanks for your attention

SPARE SLIDES

Charmonium system

PDG [Prog.Theor.Exp.Phys. 2022, 083C01]

Bottomonium system

PDG [Prog.Theor.Exp.Phys. 2022, 083C01]

Polarisation of P-wave charmonia $\sqrt{s} = 8 \text{ TeV}$

- Within NRQCD, χ_{c1} and χ_{c2} polarisations can be predicted with a single CO (color octet) parameter from χ_{c2}/χ_{c1} cross-section ratio NRQCD prediction Faccioli et al. [EPJ C 78 (2018) 3, 268]
- « Relative » polarisation study of χ_{c2} vs χ_{c1}

CMS [PRL 124 (2020) 16, 162002]

Associated production : $\Upsilon(1S)$ pair production and search for resonances $\sqrt{s} = 13 \text{ TeV}$

- Y(1S) pair production cross-section (for unpolarised mesons): $79 \pm 11(\text{stat}) \pm 6(\text{syst}) \pm 3(\mathcal{B}) \text{ pb}$
- First measurement of DPS contribution to di-Y(1S) production : $f_{\rm DPS} = (39 \pm 14)\%$

$\Upsilon(1S)$ pair production observed in 4μ

CMS [PLB 808 (2020) 135578]

$\psi(2S)$ / J/ ψ ratio vs multiplicity

ALICE [arXiv:2204.10253] Comovers, Ferreiro [PLB 749 (2015) 98]

 $\sqrt{s} = 13 \text{ TeV}$

- Excited-to-ground state ratio is also measured in the charmonium sector
- Compatible with unity and model calculations

J/ψ polarisation

ALICE [PRL 108 (2012) 082001] ALICE [EPJ C 78 (2018) 7, 562] LHCb [EPJ C 73 (2013) 11, 2631]

CGC + NRQCD, Ma et al. [JHEP 12 (2018) 057]

ICEM, Cheung, Vogt [PRD 104 (2021) 9, 094026]

Pseudorapidity densities of charged particles in pp collisions

$J/\psi p_T$ spectra $\sqrt{s} = 8 \text{ TeV}$

ATLAS [EPJ C 76 (2016) 5, 283] , [ATLAS-BPHY-2012-02] LHCb [JHEP 06 (2013) 064]

Non-prompt J/ ψ fraction vs p_T

$\sqrt{s} = 5 \text{ TeV}$

- Measurements available in different rapidity intervals (ALICE, CMS, LHCb)
- The fraction of $J/\psi \leftarrow b$ increases with p_T

Three competing models (1/2)

How quarkonia are produced ? From initial $|q\bar{q}\rangle$ to the physical quarkonium $|Q\bar{Q}\rangle$:

- CSM (Colour-singlet model)
 - $> |q\bar{q}
 angle
 ightarrow |Q\bar{Q}
 angle$ allowed only if same quantum numbers (both colourless, same J^{PC})
 - > transition probability determined by wavefunction at origin
- (Improved) CEM (Colour evaporation model)
 - initial pairs below open charm (beauty) threshold will hadronise to charmonium (bottomonium)
 - > no requirements on initial quantum numbers
 - > probability $|q\bar{q}\rangle \rightarrow |Q\bar{Q}\rangle$ only depends on the considered final state : universal constant $f_{Q\bar{Q}}$ for a given quarkonium
- both models : ordered only in increasing power of α_s (Feynman diagrams involved in hard creation of $|q\bar{q}\rangle$ pair)

Three competing models (2/2)

How quarkonia are produced ? From initial $|q\bar{q}\rangle$ to the physical quarkonium $|Q\bar{Q}\rangle$:

- NRQCD (non-relativistic QCD, based on an EFT) with
 - > ordering in power of v (heavy quark velocity) and α_s
 - > a physical quarkonium is a superposition of Fock states, e.g.

$$|J/\psi\rangle = \mathcal{O}(1) \underbrace{\left| c\bar{c} \left[{}^{3}S_{1}^{(1)} \right] \right\rangle}_{\alpha_{s}^{3}} + \mathcal{O}(v) \underbrace{\left| c\bar{c} \left[{}^{3}P_{J}^{(8)}g \right] \right\rangle}_{\alpha_{s}^{2}} + \mathcal{O}(v^{2})$$

> the transition probability is determined by supposedly universal non-perturbative longdistance matrix elements (LDME) that are extracted from « fit » to experimental data

$$\left| q\bar{q} \left[{}^{2S+1}L_J^{(1,8)} \right] \right\rangle \to \left| Q\bar{Q} \right\rangle$$

- > NRQCD adds CO terms to the CSM
- > Heavy-quark spin-symmetry links CS and CO LDME of different quarkonium states
 - ➡ stronger constraints on LDME from simultaneous study of several states