Searches for leptoquarks and other leptonic final states

Halil Saka (University of Cyprus) on behalf of the CMS Collaboration
May 23, 2023
LQs in BSM landscape

- Leptoquarks are colored states with both baryon and lepton quantum numbers
 - models with larger symmetry groups / unification of matter (leptons ↔ quarks)
 - GUTs → Vector LQs may emerge as gauge bosons
 - → Scalar LQs may emerge in the symmetry breaking sector
 - compositeness theories (LQs may emerge as bound states)
 - LQ-like states also appear in the MSSM Lagrangian with R-parity violating terms
 - allowed in SM Lagrangian when extended to all renormalizable interactions

- At the LHC, novel lepton+jet resonances, among other signatures.

 Low energy bounds, including proton decay, can be avoided by:
 - couplings to one generation of leptons/quarks
 - couplings to third generation fermions (generally weaker constraints)
 - approximate alignment of couplings with SM Yukawa couplings

 Simultaneous violation of these may lead to QLFV
Searches with full Run2 data from CMS cover:

- **off-diagonal** couplings in flavor
- **non-QCD production** modes → indirect signatures
- **non-minimal models** with more than one coupling (motivated by tensions in LFU)
- emphasis on couplings with **third generation fermions** today!

all with Run 2 dataset
LQ-\(\tau\)-b / LQ-\(\tau\)-q

- First search for LQ using lepton-quark collisions!
 - possible due to recent advances in precision of lepton PDFs

- Event selection:
 - single lepton (c, \(\mu\), \(\tau\)_\(\nu\)) + high \(p_T\) jet
 - veto events with additional leptons

(complementarity to single/pair production)

- Two categories/models based on “b-tag” of leading jet
 - probes both \(\lambda_{rb}\) and \(\lambda_{rq}\)

- Unambiguous “LQ” resonance:
 - require \(p_T^{\text{miss}}\) to be aligned with \(\tau\) lepton

NEW RESULT! EXO-22-018

A crucial aspect which prevented so far to fully explore the phenomenology offered by lepton initiated processes is the lack of a precise determination of the lepton densities

\[\text{[Bertone,Carranza,Pagani,Zaro, JHEP 11 (2019) 194]}\]

1994 paper: very interesting, but almost forgotten...

[Slide borrowed from L. Buonocore et al.](https://indico.cern.ch/event/921962/)

LQ-τ-b / LQ-τ-q

- Single-lepton + high p_T jet selection → $W+bb$ background.
 - Normalization is obtained from data in a dedicated selection (≈7% unc.)
- Other irreducible backgrounds are from simulation, with theoretical cross-sections.
- Data driven estimate of misidentified lepton candidates (10-30% unc.)

BDT for model-specific event selection:
- Angles between physics objects
- Ratios of object p_T's with respect to each other, or w.r.t. collinear mass
 - Limited dependency on LQ mass

Collinear mass is the final discriminant (resonance at the LQ mass)
- \gtrsim10% resolution over the range of probed couplings
Constraints on $\text{LQ} - \tau - b$ coupling, complementary to the dilepton searches (next)

Differences due to the quark content of the proton PDF

First direct limits on $\text{LQ} - \tau - q$ couplings with light flavored quarks (similar acceptance)

Probing multi-TeV LQ phase-space otherwise inaccessible for direct production at the LHC
LQ-τ-q / ν-q

- Benchmark analysis for a "heavy W-like" signature, with high p_T lepton and p_T^{miss}
 - traditionally interpreted for W' of SSM (broad enhancement in M_T)

- Event selection:
 - one high p_T hadronic tau lepton candidate ($p_T > 130/190$ GeV)
 - require p_T^{miss} to be back to back with τ lepton, compatible in magnitude
 - veto events with additional electrons or muons

- Dominant background is W+jets:
 - estimated by MC (corrected to NNLO QCD + NLO EW)
 - mass dependent uncertainty (5-20%)
 - PDF uncertainties dominate at high m_T (50% beyond 1.8 TeV, from NNPDF3.1)

- Data driven estimate of misidentified τ_h candidates (10-30%)
 - developed in $\ell\tau_h$ events
 - normalization constrained in the fit (100% prefit uncertainty)
Probing phase-space favored by an LQ fit of the charged-current B decay anomalies

\[\beta_L = \begin{pmatrix} 0 & 0 & \beta_L^{\tau} \\ 0 & \beta_L^{\mu} & \beta_L^{\tau} \\ 0 & \beta_L^{\mu} & 0 \end{pmatrix}, \quad \beta_R = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \beta_R^{\tau} \end{pmatrix} \]

\[J_{\mu}^L = \beta_L^{\tau} \left(\overline{q}_L \gamma_{\mu} \ell_L^\tau \right) + \beta_L^{\mu} \left(\overline{d}_R \gamma_{\mu} \ell_R^\tau \right) \]

<table>
<thead>
<tr>
<th>Model</th>
<th>Parameter</th>
<th>Expected Limit</th>
<th>Observed Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>LQ best-fit LH+RH, (g_U = 1.0)</td>
<td>(m_{1Q})</td>
<td>645 GeV</td>
<td>515 GeV</td>
</tr>
<tr>
<td>LQ best-fit LH+RH, (g_U = 2.5)</td>
<td>(m_{1Q})</td>
<td>3.0 TeV</td>
<td>2.5 TeV</td>
</tr>
</tbody>
</table>

https://arxiv.org/abs/2103.16558
95% CL upper limits, 16% signal eff.
- Observed
- Median expected
- 68% expected
- 95% expected

Signal efficiency includes the branching fraction of hadronic τ lepton decays and experimental efficiencies for the signal.

Valid for models with **back-to-back topology** of τ_h and p_T^{miss}
LQ-τ-b

- Targets three production modes simultaneously, with τ – b couplings

- Resonant channels: $S_{\text{T}}^{\text{MET}}$
 Nonresonant channel: χ

- Event selection:
 - dilepton signal regions ($e\tau_h, \mu\tau_h, \tau_h\tau_h$) with(out) a high p_T jet
 - light-flavored final states ($e\mu, \mu\mu$) used as control selections

- Main categories:
 - b-tagged jet multiplicity (resonant ch.)
 - visible mass m_{vis} (200-400, 400–600, >600 GeV) (nonresonant ch.)

- Irreducible backgrounds are estimated by MC methods
 - normalized to theoretical cross-sections.

- Data driven estimate of misidentified lepton candidates (10-30%)
 - W+jets and QCD multijet contributions
LQ-τ-b

- **Angular χ variable** is used to probe **nonresonant** signal: \(\chi \equiv \exp \left(|y(\tau_1) - y(\tau_2)| \right) \)
- **LQ Yukawa coupling** dominate sensitivity at **large mass**

Events / 2

- CMS Preliminary
- 137 fb\(^{-1}\) (13 TeV)

- \(\tau_\ell \tau_\ell \), 400 < \(m_{\text{vis}} \) < 600 GeV

Obs. / Bkg.

- Small excess, with contributions from multiple dilepton channels

CMS Preliminary

- LQ, 2000 GeV, \(\lambda=2.5 \), \(\beta=1 \), \(\kappa=1 \)
- Z \rightarrow \tau_\ell \tau_\ell
- τ and single top
- τ \rightarrow τ _ fakes
- Drell-Yan with \(l \rightarrow \tau_\ell \)
- Diboson
- Bkg. unc.

Nonresonant channel: \(\chi \)

- \(\lambda = 1 \)
- 137 fb\(^{-1}\) (13 TeV)

λ = 2.5

- 95% CL upper limit on \(σ_{\text{scalar}} \) [pb]

λ = 1

- 95% CL upper limit on \(σ_{\text{scalar}} \) [pb]

Hall Saka (University of Cyprus)

Searches for leptoquarks and other leptonic final states at CMS - LHCP 2023
Probing phase-space favored by an LQ fit of the charged-current B decay anomalies

CMS Preliminary
137 fb⁻¹ (13 TeV)

95% CL upper limits
- Observed
- Expected
Scalar, \(\beta = 1 \)

68% expected

Coupling strength \(\lambda \)

Leptoquark mass [GeV]

~3.5 \(\sigma \) excess at large coupling values

→ details are to appear in a paper soon!
- not signal-like in the strict sense of the probed LQ model
- mostly insensitive to interference effects, and systematic uncertainties

CMS Preliminary
137 fb⁻¹ (13 TeV)

95% CL upper limits
- Observed
- Expected
Vector, \(\beta = 1, \kappa = 0 \)

68% expected

Coupling strength \(\lambda \)

Leptoquark mass [GeV]
- A broad BSM search targeting **multilepton** events
 - Type-III seesaw heavy fermions
 - Vector-like leptons
 - **Leptoquarks** (top-philic)

- Event selection:
 - **three/four lepton** signatures \((e, \mu, \tau_h)\) with minimum \(p_T\) of 10-20 GeV.
 - events are categories based on **lepton charge, mass, and flavor** characteristics.

- Irreducible bckg. processes are taken from simulation
 - WZ, ZZ, t\(\bar{t}\)Z, Z\(\bar{g}\), (normalized to data)

- **Data driven** estimate of events with **misid. lepton**
 - jet \(\rightarrow e, \mu, \tau_h\) (matrix method)
Inclusive categories

Selection-based, ST binning

CMS Advanced S, Table [3L 1S]

Events / Bin

CMS Advanced S, Table [3L 2B]

Events / Bin

BDT-based binning

CMS

LQ-M \(H_{L} + H_{L} = 1 \) BDT regions [3L,2L1T,1L2T]

- 138 fb\(^{-1}\) (13 TeV)

138 fb\(^{-1}\) (13 TeV)

Signal discrimination via dual approach:
- selection based approach with \(L_T, p_T^{\text{miss}}, H_T, S_T \) (transverse momentum variables), and \(N_f, N_b \)
- machine learning based (BDT) discriminator is built for LQ signal (transverse or angular variables of physics objects)
Limits on pair-production mode: \(\text{LQ} - e/\mu - t \sim 1.4 \text{ TeV} \)
\(\text{LQ} - \tau - t \sim 1.1 \text{ TeV} \)
Summary

- **Leptoquarks** are among the plausible/desirable extensions of the SM boson sector:
 - matter unification
 - revival due to observed tensions in the flavor sector
 - provide appealing detector signatures

- A multi-prong LQ search program at CMS:
 - lepton+jet & neutrino+jet
 final states are both being targeted
 - models with third generation fermion couplings

- Breaking tradition with the most minimal models:
 - non-QCD production modes
 - flavor off-diagonal couplings
 - simultaneous nonzero couplings
 - LQs with other BSM particles

Stay tuned!
Backup
Overview of CMS LQ search program

CMS Summary Plots

Selection of observed exclusion limits at 95% C.L. (theory uncertainties are not included.)

Scalar Vector(k=0) Vector(k=1)

Halli Saka (University of Cyprus)

Searches for leptoquarks and other lepton final states at CMS - LHCP 2023
Run1+2+3 pp collisions at a glance

Total integrated luminosity (fb⁻¹)

Date (UTC)

Recorded luminosity (fb⁻¹/10)

Mean number of interactions per crossing

Hall Saka (University of Cyprus)
Leptoquark representations in mBRW

<table>
<thead>
<tr>
<th>Leptoquark</th>
<th>Spin</th>
<th>F</th>
<th>SU(3) ({C} \otimes) SU(2) ({L} \otimes) U(1) (_{Y}) representation</th>
<th>(Q_{EM})</th>
<th>Coupling</th>
<th>Decay mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S_{1})</td>
<td>0</td>
<td>2</td>
<td>(3,1,–2/3)</td>
<td>–1/3</td>
<td>(\lambda_{L,R}(u,e_{L,R})), (-\lambda_{L}(d,\nu_{e}))</td>
<td>(t\nu), (b\nu)</td>
</tr>
<tr>
<td>(\tilde{S}_{1})</td>
<td>0</td>
<td>2</td>
<td>(3,1,–8/3)</td>
<td>–4/3</td>
<td>(\lambda_{R}(d,e_{R}))</td>
<td>(b\tau)</td>
</tr>
<tr>
<td>(S_{2})</td>
<td>0</td>
<td>0</td>
<td>(3,2,–7/3)</td>
<td>–2/3</td>
<td>(\lambda_{L}(u,\nu_{e}))</td>
<td>(\tilde{t}\nu), (b\tau)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>–5/3</td>
<td>(\lambda_{L,R}(u,e_{L,R}))</td>
<td>(t\tau)</td>
</tr>
<tr>
<td>(\tilde{S}_{2})</td>
<td>0</td>
<td>0</td>
<td>(3,2,–1/3)</td>
<td>+1/3</td>
<td>(\lambda_{L}(d,\nu_{e}))</td>
<td>(b\nu)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>–2/3</td>
<td>(\lambda_{L}(d,e_{L}))</td>
<td>(b\tau)</td>
</tr>
<tr>
<td>(S_{3})</td>
<td>0</td>
<td>2</td>
<td>(3,3,–2/3)</td>
<td>+2/3</td>
<td>(\sqrt{2}\lambda_{L}(u,\nu_{e}))</td>
<td>(t\nu)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>–1/3</td>
<td>(-\lambda_{L}(u,e_{L}))</td>
<td>(t\tau), (b\nu)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>–4/3</td>
<td>(-\sqrt{2}\lambda_{L}(d,e_{L}))</td>
<td>(b\tau)</td>
</tr>
<tr>
<td>(\nu_{1})</td>
<td>1</td>
<td>0</td>
<td>(3,1,4/3)</td>
<td>–2/3</td>
<td>(\lambda_{L,R}(d,e_{L,R})), (\lambda_{L}(u,\nu_{e}))</td>
<td>(b\tau), (\tilde{t}\nu)</td>
</tr>
<tr>
<td>(\tilde{\nu}_{1})</td>
<td>1</td>
<td>0</td>
<td>(3,1,–10/3)</td>
<td>–5/3</td>
<td>(\lambda_{R}(u,e_{R}))</td>
<td>(\tilde{t}\tau)</td>
</tr>
<tr>
<td>(\nu_{2})</td>
<td>1</td>
<td>2</td>
<td>(3,2,–5/3)</td>
<td>–1/3</td>
<td>(\lambda_{L}(d,\nu_{e}))</td>
<td>(b\nu), (t\tau)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>–4/3</td>
<td>(\lambda_{L,R}(d,e_{L,R}))</td>
<td>(b\tau)</td>
</tr>
<tr>
<td>(\tilde{\nu}_{2})</td>
<td>1</td>
<td>2</td>
<td>(3,2,1/3)</td>
<td>+2/3</td>
<td>(\lambda_{L}(u,\nu_{e}))</td>
<td>(t\nu)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>–1/3</td>
<td>(\lambda_{L}(u,e_{L}))</td>
<td>(t\tau)</td>
</tr>
<tr>
<td>(\nu_{3})</td>
<td>1</td>
<td>0</td>
<td>(3,3,–4/3)</td>
<td>+1/3</td>
<td>(\sqrt{2}\lambda_{L}(d,\nu_{e}))</td>
<td>(b\nu)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>–2/3</td>
<td>(-\lambda_{L}(d,e_{L}))</td>
<td>(b\tau), (\tilde{t}\nu)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>–5/3</td>
<td>(-\sqrt{2}\lambda_{L}(u,e_{L}))</td>
<td>(t\tau)</td>
</tr>
</tbody>
</table>

Table 2.1: Scalar and vector LQs as defined in the mBRW model. Representations under the SM gauge group are labelled by the dimensions of SU(3)\(_{C}\) and SU(2)\(_{L}\) representations, and the U(1)\(_{Y}\) hypercharge Y, respectively. Fermion number is defined as \(F = 3B + L\), and electric charge, \(Q_{EM} = T^{3} + Y/2\), is in units of proton charge, |e|, where \(T^{3}\) is the third eigenvalue component of the SU(2) representation. Decay mode is provided assuming third generation LQs only.
The flavor issue: $R(D^{(*)})$, $R(K^{(*)})$

The deviation w.r.t. the SM at 3.2σ for the combination of $R(D)-R(D^*)$

https://hflav.web.cern.ch/content/semileptonic-b-decays
https://cds.cern.ch/record/2857546 (LHCb-PAPER-2022-052, for the most recent measurement)
Best-fit scenarios to ‘b anomalies’

\[
\beta_L = \begin{pmatrix}
0 & 0 & \beta_{d\tau}^L \\
0 & \beta_{s\mu}^L & \beta_{s\tau}^L \\
0 & \beta_{b\mu}^L & \beta_{b\tau}^L
\end{pmatrix}, \quad \beta_R = \begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & \beta_{b\tau}^R
\end{pmatrix}
\]

\[
J^U_{\mu} = \beta_{L}^{i\alpha} (\bar{q}^i_L \gamma_{\mu} e^\alpha_L) + \beta_{R}^{i\alpha} (\bar{d}^i_R \gamma_{\mu} e^\alpha_R)
\]

ex/ https://arxiv.org/abs/2103.16558

Best-fit LH couplings

\[
\beta_L = \begin{pmatrix}
0 & 0 & -0.04 \\
0 & 0.014 & 0.19 \\
0 & -0.15 & 1
\end{pmatrix}, \quad \beta_R = \begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
\]

Best-fit LH+RH couplings

\[
\beta_L = \begin{pmatrix}
0 & 0 & -0.04 \\
0 & 0.03 & 0.21 \\
0 & -0.21 & 1
\end{pmatrix}, \quad \beta_R = \begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{pmatrix}
\]

Democratic couplings

\[
\beta_L = \begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}, \quad \beta_R = \begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
\]
VLL / Type-III Seesaw

Doublet: τ', ν'

Singlet: τ'

$\Sigma^+\Sigma^0$

Limits on VLL doublet ~ 1 TeV
singlet ~ around 125-170 GeV

Limits on Type-III Seesaw heavy fermions:
~890-1065 GeV (per flavor scenario)
Resonances in multilepton events

CMS Preliminary

$W\phi(\rightarrow \tau\tau)$, Pseudoscalar ϕ

$Z\phi(\rightarrow ee)$, Pseudoscalar ϕ

$t\phi(\rightarrow \mu\mu)$, Pseudoscalar ϕ

95% CL upper limits
- Observed
- Median expected

68% expected
- Expected

95% expected
- Expected

Same machinery as in EXO-21-002
LQ-τ-b / ν-t

- "Third generation" vector leptoquarks
 - pair + single production mode, with $\beta = 0.5$
 - Couplings only to third generation fermions (bτ, tν or bν, tτ)

- Dilepton final state, with resolved/merged top quark decays $\rightarrow t\tau ν(b)$

Most stringent limits on LQ mass ~ 1.4 TeV for $\beta = 0.5$
- Targeting final states with **high hadronic activity** (jets and p_T^{miss})
 - categories (b-tagged) jet multiplicity, and H_T
 - background estimated by data driven methods (lost lepton, QCD, $Z \rightarrow \nu\nu$)

Constraints on $LQ \rightarrow q\nu$ decays for all quark flavors!
Table 2: Best-fit LQ cross sections σ for various masses and coupling strengths λ, and the corresponding significance z (given in standard deviations) for different production modes individually, as well as their combination.

<table>
<thead>
<tr>
<th>Signal</th>
<th>$m_{LQ} = 1400,\text{GeV}$</th>
<th>$m_{LQ} = 2000,\text{GeV}$</th>
<th>σ [pb]</th>
<th>σ [fb]</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scalar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pair</td>
<td>$0.24^{+0.47}_{-0.45}$</td>
<td>0.5</td>
<td>$0.22^{+0.41}_{-0.39}$</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Single, $\lambda = 1$</td>
<td>$1.15^{+0.92}_{-0.68}$</td>
<td>1.3</td>
<td>$0.64^{+0.65}_{-0.65}$</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Single, $\lambda = 2.5$</td>
<td>$9.1^{+5.5}_{-5.3}$</td>
<td>1.7</td>
<td>18^{+1}_{-11}</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>Nonres.</td>
<td>70^{+23}_{-22}</td>
<td>3.4</td>
<td>63^{+20}_{-19}</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>Total, $\lambda = 1$</td>
<td>$1.7^{+1.9}_{-1.8}$</td>
<td>0.9</td>
<td>$9.6^{+5.2}_{-5.9}$</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>Total, $\lambda = 2.5$</td>
<td>43^{+15}_{-16}</td>
<td>2.9</td>
<td>62^{+20}_{-19}</td>
<td>3.4</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Resonant</th>
<th>Nonresonant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of jets, $p_T > 50,\text{GeV}$</td>
<td>$\geq 1j$</td>
<td>$\geq 1j$</td>
</tr>
<tr>
<td>Number of b tags, $p_T > 50,\text{GeV}$, loose DeepCSV</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>DeepTaus2017v2p1VJet</td>
<td>Medium</td>
<td>VLoose</td>
</tr>
<tr>
<td>DeepTaus2017v2p1V8eSmu</td>
<td>VLoose</td>
<td></td>
</tr>
<tr>
<td>Extra lepton vetoes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Opposite charge</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>p_T of decay candidates</td>
<td>$> 50,\text{GeV}$</td>
<td></td>
</tr>
<tr>
<td>$m_{T\ell}$</td>
<td>$> 100,\text{GeV}$</td>
<td></td>
</tr>
<tr>
<td>$</td>
<td>\eta</td>
<td>+</td>
</tr>
<tr>
<td>$\Delta\eta_T$</td>
<td>< 3</td>
<td></td>
</tr>
<tr>
<td>Discriminating variable</td>
<td>S_T^{MET}</td>
<td>χ</td>
</tr>
</tbody>
</table>
LQ-τ-b

- A broad search targeting **resonant and nonresonant ditau** signatures
 - **Vector leptoquark** with enhanced LQ-tau-b/s couplings (bb, bs, ss initiated production)

- **Event selection:**
 - **two lepton** final states (eμ, eτh, μτh, τhτh)
 - events with additional e/μs are vetoed
 - two categories: 0, >0 “b-tagged” jets
 - further categorization on lepton-\(p_{T}\)\(^{\text{miss}}\) based variables (e.g. \(m_{T}\))

- **“Tau-embedding”** for irreducible pp → ττ background
 - Muons in pp → μμ events are replaced with “simulated” tau lepton decays

- **Data driven** estimate of events with lepton misID
 - jet → e, μ, (same sign method), jet → τh (fake factor)
 - typical uncertainty are \(\mathcal{O}(10)\)%

- Other (irreducible) backgrounds are estimated by MC simulation

Background composition:

- 0 b-tagged jet: Z, jet → tau MisID (Loose-\(m_{T}\))
- >0 b-tagged jet: tt
\(\tau_h \tau_h + b \) tag

BM2: Bestfit LH+RH

138 fb\(^{-1}\) (13 TeV)

CMS

SM interference → reduced sensitivity at high mass.

Signal discrimination:
- total transverse mass \(m_T^{\text{tot}} \) is used as the final discriminant.

\[
m_T^{\text{tot}} = \sqrt{m_T^2(p_T^{T_1}, p_T^{T_2}) + m_T^2(p_T^{\tau_1}, p_T^{\tau_1}) + m_T^2(p_T^{\tau_2}, p_T^{\tau_2})}
\]
Tau embedding ($pp \rightarrow \tau\tau$)

Z → μμ Selection

Simulate τ leptons with same kinematic properties as muons.

Z → μμ Cleaning

Remove energy deposits from muons.

Z → ττ Simulation

Merge simulated and cleaned event.

Z → ττ Hybrid

Embedding technique eliminates possible issues with underlying event description, pileup contributions, or production of associated jets.