

CMS Highlights on Searches for New Physics in Final States with Jets

<u>Emmanouil (Manos) Vourliotis</u> on behalf of the CMS Collaboration

24 May 2023

- Standard Model (SM) of Particle Physics:
 - So beautiful...
 - ...yet incomplete...

- Standard Model (SM) of Particle Physics:
 - So beautiful...
 - ...yet incomplete...
- On a hunt for particles beyond it → New Physics in the form of:

- Standard Model (SM) of Particle Physics:
 - So beautiful...
 - ...yet incomplete...
- On a hunt for particles beyond it → New Physics in the form of:
 - New gauge bosons?

- Standard Model (SM) of Particle Physics:
 - So beautiful...
 - ...yet incomplete...
- On a hunt for particles beyond it → New Physics in the form of:
 - New gauge bosons?
 - New **dimensions**?

- Standard Model (SM) of Particle Physics:
 - So beautiful...
 - ...yet incomplete...
- On a hunt for particles beyond it → New Physics in the form of:
 - New gauge bosons?
 - New **dimensions**?
 - Compositeness?

- Standard Model (SM) of Particle Physics:
 - So beautiful...
 - ...yet incomplete...
- On a hunt for particles beyond it → New Physics in the form of:
 - New gauge bosons?
 - New **dimensions**?
 - Compositeness?
- New, simple or elaborate ideas to probe even more beyond the SM.
 - New ways of using common experimental objects

- Standard Model (SM) of Particle Physics:
 - So beautiful...
 - ...yet incomplete...
- On a hunt for particles beyond it → New Physics in the form of:
 - New gauge bosons?
 - New **dimensions**?
 - Compositeness?
- New, simple or elaborate ideas to probe even more beyond the SM.
 - New ways of using common experimental objects: Jets.

Novel analyses at CMS

Search for a high mass dimuon resonance associated with b quark jets at $\sqrt{s} = 13$ TeV

<u>CMS-PAS-EXO-22-016</u>

24 May 2023

New

Analysis Motivation

- Search for new neutral vector boson Z' → µµ in association with ≥ 1 b-jet.
 - − 350 GeV ≤ $m_{Z'}$ ≤ 2.5 TeV
 - Z' coupling to b & s quarks ⇒
 Implications to low energy b→sℓℓ observables^[1].
- Simplified lepton flavor-universal lagrangian^[2]:

 $\mathcal{L}_{\text{BSM}} = Z'_{\eta} \left(g_{\ell} \sum_{f=e,\mu,\tau} \bar{f} \gamma^{\eta} P_L f + g_{\nu} \sum_{f=\nu_e,\nu_\mu,\nu_\tau} \bar{f} \gamma^{\eta} P_L f + g_{\text{b}} \left[\bar{\mathbf{b}} \gamma^{\eta} P_L \mathbf{b} + \delta_{\text{bs}} \left(\bar{\mathbf{s}} \gamma^{\eta} P_L \mathbf{b} + \text{h.c.} \right) \right] \right)$

- Full Run 2 CMS data set in a different light → Enhanced sensitivity by:
 - Explicit event categories based on N_b.
 - $t\bar{t}$ killer veto: Suppress the dominant SM background.

[1]: <u>JHEP 04 (2023) 033</u> [2]: <u>PTEP 2022 (2022) 083C01</u>

24 May 2023

24 May 2023

Manos Vourliotis

11

Optimizing Selection & Categorization

- Select high-p_T dimuon pair:
 - Muons with $p_T(\mu) > 53$ GeV & $|\eta(\mu)| < 2.4$.
 - Global high-p⊤ muon ID.
 - Tight tracker isolation & impact parameter requirements.
- Select ≥1 tight b-tagged jet:
 - − p_T > 20 GeV, |η| < 2.5
 - Medium b-tagging WP for other b-tagged jets.
- Veto events with:
 - Cosmics → 3D angle btw. muons < π 0.02.
 - Extra leptons (e & μ) & isolated tracks (τ leptons).
 - Significant muon or b-jet mismeasurements, i.e.: MET > 250 GeV && ($|\Delta \phi_{MET,\mu/b}| < 0.3 || |\Delta \phi_{MET,\mu/b}| > π - 0.3$)
- Categorize selected events:
 - $N_{b} = 1$
 - $N_b \ge 2$

Going Fully Data-Driven

- Background parametrization:
 PDF envelope of exponential, power law & bernstein polynomial functions.
 - Fit $m_{\mu\mu}$ within $m_{Z'} \pm 10 \sigma_{mass}$.
 - Unbinned likelihood fits directly in data ⇒ No dependence on SM simulation.
- **Signal parametrization:** Double-sided Crystal Ball + Gaussian.
 - Signal shape parameters from simulation \rightarrow Dependence vs. $m_{Z'}$.

- No significant excess.
- Model independent limits on number of signal events with $N_b \ge 1$.
 - Easily reinterpretable for any neutral resonance model!
 - Vary relative fraction of events in N_b ≥ 2 category, f_{2b} ⇒
 Probe different signal hypotheses.
 - Dimishing background for increasing masses and/or f_{2b} ⇒
 More strigent limits.

Global-fit preferred

parameter space

completely excluded for

some masses!

- Narrow-width resonance \Rightarrow Restrict to parameter space where $\Gamma_{Z'} < \sigma_{mass} / 2$.
- Interpretation for the simplified lepton flavor-universal lagrangian ($g_{\ell} = g_{\nu}$).
- Set constraints on B₃-L₂ model of Ref. [1]:
 - $-g_{Z'}$ = coupling of Z' to SM fermions.
 - θ_{23} = mixing angle between 2nd & 3rd generation quarks.

Search for high-mass resonances decaying to a jet and a Lorentz-boosted resonance in proton-proton collisions at √s=13TeV

<u>CMS-PAS-EXO-20-007</u> Phys. Lett. B, 832, 137263

> Intermission for context

24 May 2023

Analysis Motivation

• Physics cases:

[3]: <u>arXiv:hep-ph/9606311</u>

- Cascade decay (Res1 → Res2...)
 - Extra dimensions KK gauge boson: $G_{KK} → \varphi g → ggg^{[3]}$
 - M_{Res2} / m_{Res1} = ρ_m ≤ 0.2 ⇒
 One jet + one boosted jet pair ⇒ This analysis.
- Reconstruction strategy:
 - AK15 jets to recover:
 - Both jets from Res2.
 - Hard gluon radiation from isolated g.
 - Exploit **N-subjettiness**:
 - → Jet with low τ_{21} → Res2 candidate!

24 May 2023

Analysis Strategy

Event selection:

- 2 AK15 jets (p_T > 100 GeV & $|\eta| < 2.5$).
- Δ η_{jj} < 1.3 (QCD suppression)
- m_{jj} > 1.6 TeV (trigger selection)

Categorization:

- Optimize signal significance:
 - > $m_{Res2} ≤ 0.6 \text{ TeV} \Rightarrow 22 \text{ categories}^{-1}$
 - > 0.6 < m_{Res2} ≤ 1.2 TeV ⇒ 9 categories
 - > m_{Res2} > 1.2 TeV ⇒ 1 categories
- Also recovers wrong Res2-jet assignment.

Parametrization:

- Signal: Double-sided Crystal Ball from simulation.
- Background: Smoothly falling function from data.

24 May 2023

Signal extraction:

- Binned, simultaneous MLL fit on m_{jj}.
 - Binning determined by m_{jj} resolution (~5%).
- − Fit range → $0.65m_{Res1} \le m_{jj} \le 1.15m_{Res1}$
 - Lower bound adjusted/category rejected based on existence of m_{jj} turn-on near signal peak.

• No significant excess observed:

- Max local(global) significance = $3.2\sigma(<1.8\sigma)$.
- 1st search to probe 3-parton final state using a dijet signature:
 - Significantly extend excluded parameter space for G_{KK} model (~1 TeV).

Signal extraction:

- Binned, simultaneous MLL fit on m_{ii}.
 - Binning determined by m_{jj} resolution (~5%).
- − Fit range $\rightarrow 0.65 m_{Res1} \le m_{ii} \le 1.15 m_{Res1}$
 - Lower bound adjusted/category rejected based on existence of m_{ii} turn-on near signal peak.

No significant excess observed:

- Max local(global) significance = 3.2σ (<1.8 σ).
- 1st search to probe 3-parton final state using a dijet signature:
 - Significantly extend excluded parameter **space** for G_{KK} model (~1 TeV).

24 May 2023

0.14

0.12

0.1

4

5

6

8 m(R₁) [TeV]

E 0

Search for narrow trijet resonances in proton-proton collisions at √s = 13 TeV on CMS

<u>CMS-PAS-EXO-22-008</u>

24 May 2023

Analysis Motivation

1st generic search for 3-jet resonances!

- Physics cases:
 - Direct 3-body decay
 - Benchmark model:
 Z_R → ggg^[4]
 - $\Gamma \sim 3(0.01)\%$ for nominal(narrow) hypothesis.
 - Cascade decay (Res1 → Res2...)
 - Extra dimensions KK gauge boson: $G_{KK} → \varphi g → ggg^{[3]}$
 - Compositeness excited quarks: $q^* \rightarrow W'q \rightarrow qqq^{[3]}$
 - > $0.2 ≤ \rho_m ≤ 0.8 \Rightarrow$

Three **resolved** jets \Rightarrow This analysis.

Analysis based on full Run 2 CMS data set.

[4]: <u>arXiv:1612.00047</u>

24 May 2023

New

Trijiet Selection

- Final state gluons ⇒
 Energy outside the AK4 cone.
 - Add AK4 jets to recover energy:
 - Seeds: 3 jets (p_T > 100 GeV & |η| < 2.5).</p>
 - > **Combine**: Jets (p_T > 30 GeV & $|\eta|$ < 2.5) within ∆R < 1.1.
 - Result: 3 wide-jets used for selection.
- Selection:
 - Optimized by S/ \sqrt{B} studies \rightarrow
 - ≻ max(∆ŋ_{jj}) < 1.6
 - ≻ max(∆R_{jj}) < 3.0
 - Limited by trigger selection \rightarrow
 - ≻ m_{jjj} > 1.50 TeV for 2016.
 - [▶] m_{jjj} > 1.76 TeV for 2017/2018.

Signal & Bkg Modelling

Pouleg uory traduo

- Signal extraction: Binned, MLL fit on m_{jjj}.
 - Binning determined by m_{jjj} resolution (2–4%).
- Signal modelling: Simulation templates.
 - Interpolated using the morphing method:
 - ≻ 50 GeV, $m_{jjj} \le 3$ TeV
 - > 100 GeV, 3 < m_{jjj} ≤ 5 TeV
 - > 200 GeV, m_{jjj} > 5 TeV
- Background modelling: PDF envelope of empirical functions fit on data.

$$f_A(x; N) = p_0 \times \frac{(1-x)^{p_1}}{(x)^{\sum_{i=2}^N p_i \log^{i-2}(x)}}$$

$$f_B(x; N) = p_0 \times \frac{e^{-p_1(x)}}{(x)^{\sum_{i=2}^N p_i \log^{i-2}(x)}}$$

$$f_C(x; N) = p_0 \times (x)^{\sum_{i=1}^N p_i \log^{i-1}(x)}$$

- Order determined by Fisher test.

- 1st search of its kind → Extended parameter space explored!
- No signicant excess observed:
 - Max local(global) significance = $2.2\sigma(0.36\sigma)$.
- Exclusion limits:
 - No reach for Z_R with current dataset.
 - Res1 → Res2g → ggg excluded up to 3.1 TeV.
 - Res1 \rightarrow Res2q \rightarrow qqq excluded up to 6.0 TeV.

24 May 2023

- 1st search of its kind → Extended parameter space explored!
- No signicant excess observed:
 - Max local(global) significance = $2.2\sigma(0.36\sigma)$.
- Exclusion limits:
 - No reach for Z_R with current dataset.
 - Res1 → Res2g → ggg excluded up to 3.1 TeV.
 - Res1 \rightarrow Res2q \rightarrow qqq excluded up to 6.0 TeV.

 $ho_{\rm m}$

Highlights Summarized

- Major CMS effort to probe New Physics!
- Examples of **BSM models**:
 - Z' boson.
 - Warped dimensions.
 - Compositeness.
- Utilizing all tools available in novel ways.
 - In this talk: **Jets** as the common tool.
- What the future holds:
 - More models to probe!
 - More tools to use!
 - More data to explore!
- ⇒ More analyses being prepared!

24 May 2023

CMS Preliminary

₫ 0.8

0.7

0.6

0.5

0.4

0.3

0.2

2

Obs. limit, $q^* \rightarrow V(qq)q$

Compositeness

3

4

Manos Vourliotis

 10^{-3}

6

5

7 8

9 m_{a*} [TeV]