

Jet measurements in pp collisions from CMS

11th annual conference on Large Hadron Collider Physics | 22–26 May 2023 | Belgrade, Serbia

Daniel Savoiu on behalf of the CMS Collaboration

Why jets?

jet observables provide valuable experimental input for testing QCD & the Standard Model

- *α*_s and *parton distributions* of proton (PDFs)
 - *inclusive jet* cross sections → "counting jets"
 - *dijet* cross sections → topology provides handle on parton kinematics
- modeling of higher-order contributions
 - jet production known up to NNLO in pQCD
 - additional jets from hard radiation → *multijet* production
- improved understanding of perturbative & nonperturbative regimes
 - Impact on *parton shower* & *hadronization* → jet *substructure*

Why jets?

jet observables provide valuable experimental input for testing QCD & the Standard Model

- *α*_s and *parton distributions* of proton (PDFs)
 - *inclusive jet* cross sections → "counting jets"
 - *dijet* cross sections → topology provides handle on parton kinematics
- modeling of higher-order contributions
 - jet production known up to NNLO in pQCD
 - additional jets from hard radiation → *multijet* production
- improved understanding of perturbative & nonperturbative regimes
 - impact on *parton shower* & *hadronization* \rightarrow jet *substructure*

this talk: personal selection of recent results from CMS

Inclusive jet production at $\sqrt{s} = 13$ TeV

- double-differential cross section measured as a function of jet p_T & rapidity y for anti-k_T jets with R = 0.4 & 0.7
- good experimental precision, <5% uncertainty in main measurement region
 - dominant uncertainty contribution from jet energy scale (JES)

[1] CMS Collaboration, "Measurement and QCD analysis of double-differential inclusive jet cross sections in proton-proton collisions at \sqrt{s} = 13 TeV", <u>CMS-SMP-20-011</u>, JHEP 02 (2022) 142 [Addendum], arXiv:2111.10431

D. Savoiu

Inclusive jet production at $\sqrt{s} = 13$ TeV

- improved description of data at NNLO & reduced scale uncertainty
- some disagreement between global PDF sets, especially in high-p_T region

Inclusive jet production at \sqrt{s} = 13 TeV

determination of *PDFs* & strong coupling constant up to *NNLO*

 $\alpha_{\rm s}(m_{\rm Z})_{\rm NNLO} = 0.1166 \ (14)_{\rm fit} \ (7)_{\rm model} \ (4)_{\rm scale} \ (1)_{\rm param.}$

 $4 \chi^2 / n_{\rm dof} = 1302 / 1118$

- with *t̄t* data: limits on *Wilson coefficients* for four-quark contact interactions
 - multiple coupling structures probed, no significant deviations

JHEP 02 (2022) 142

Dijet production at \sqrt{s} = 13 TeV

 double- & triple-differential cross section measured as a function of dijet invariant mass m_{1,2} & rapidity for anti-k_T jets with R = 0.4 & 0.8

 disentangle regions of different momentum fractions x carried by partons → PDF fits

[2] CMS Collaboration, "Multi-differential measurement of the dijet cross section in proton-proton collisions at \sqrt{s} = 13 TeV", <u>CMS-PAS-SMP-21-008</u>

D. Savoiu

Dijet production at \sqrt{s} = 13 TeV

comparison to fixed-order theory predictions @ NNLO × NP × EW

data generally well described by theory (here: R = 0.8)

D. Savoiu

11th annual conference on Large Hadron Collider Physics | 22–26 May 2023

9

Dijet production at $\sqrt{s} = 13$ TeV

determination of **PDFs** & strong coupling constant @ NNLO (preliminary results)

Multijet production

- jet multiplicity measured in bins of leading jet p_T & azimuthal separation Δφ_{1,2}
 - access up to 7 jets, even in back-to-back region
- compare models using conventional parton showers & *parton-branching* approach (PB) + *TMDs*
 - higher multiplicities not very well described
 - at low multiplicities, PB-TMD predictions @ NLO have similar accuracy as conventional models

PDF	ME
NNPDF 2.3 (LO) [25]	$LO 2 \rightarrow 2$
NNPDF 2.3 (LO) [25]	LO 2 \rightarrow 2, 3, 4
PB-TMD set 2 (NLO) [1]	LO 2 \rightarrow 2, 3, 4
CTEQ6L1 (LO) [27]	$\text{LO 2} \rightarrow 2$
NNPDF 3.0 (NLO) [31]	NLO $2 \rightarrow 2$
PB-TMD set 2 (NLO) [1]	NLO $2 \rightarrow 2$
PB-TMD set 2 (NLO) [1]	NLO $2 \rightarrow 3$
	PDF NNPDF 2.3 (LO) [25] NNPDF 2.3 (LO) [25] PB-TMD set 2 (NLO) [1] CTEQ6L1 (LO) [27] NNPDF 3.0 (NLO) [31] PB-TMD set 2 (NLO) [1] PB-TMD set 2 (NLO) [1]

[3] CMS Collaboration, "Measurements of jet multiplicity and jet transverse momentum in multijet events in proton-proton collisions at √s = 13 TeV", Submitted to Eur. Phys. J. C, CMS-SMP-21-006, arXiv:2210.13557

D. Savoiu

Multijet production

- jet p_T measured for up to 4 leading jets
 - in general not well described by any model @ LO
 - ^{**D**} better description for 3rd & 4th jet with NLO matrix elements

Generator	PDF	ME
PYTHIA8 [23]	NNPDF 2.3 (LO) [25]	$LO 2 \rightarrow 2$
MadGraph+Py8 [4]	NNPDF 2.3 (LO) [25]	LO 2 \rightarrow 2, 3, 4
MADGRAPH+CA3 [4]	PB-TMD set 2 (NLO) [1]	LO 2 \rightarrow 2, 3, 4
HERWIG++ [26]	CTEQ6L1 (LO) [27]	$\text{LO 2} \rightarrow \text{2}$
MG5_aMC+Py8 (jj)	NNPDF 3.0 (NLO) [31]	NLO $2 \rightarrow 2$
MG5_aMC+CA3 (jj)	PB-TMD set 2 (NLO) [1]	NLO $2 \rightarrow 2$
MG5_aMC+CA3 (jjj)	PB-TMD set 2 (NLO) [1]	NLO $2 \rightarrow 3$

- Lund jet plane represents phase space of emissions inside jets
 - anti-k_T jets are declustered iteratively using the Cambridge–Aachen algorithm
 - the density of emissions is measured as a function of $\ln(k_T / \text{GeV})$ and $\ln(1 / \Delta R)$ as:

 $\frac{1}{N_{\text{jets}}} \frac{\mathrm{d}^2 N_{\text{emissions}}}{\mathrm{d} \ln(k_{\text{T}}) \mathrm{d} \ln(R/\Delta R)}$

$$\approx \frac{2}{\pi} C_{\rm R} \alpha_{\rm S}(k_{\rm T})$$

Applications

- improve modeling of parton shower, hadronization, underlying event
- heavy-flavor tagging due to unique signatures of highly boosted color-singlet particles
- test running of α_s via analytical predictions in perturbative QCD

[4] CMS Collaboration, "Measurement of the primary Lund jet plane density in proton-proton collisions at $\sqrt{s} = 13 \text{ TeV}$ ", <u>CMS-PAS-SMP-22-007</u>

D. Savoiu

- measurement performed for both small (R = 0.4) and large-radius jets (R = 0.8)
- density measured for jets with p_T > 700 GeV & |y| < 1.7
 - □ only charged-particle constituents of jets are used → increased resolution
- multi-dimensional *unfolding* to obtain density at particle level

[4] <u>CMS-PAS-SMP-22-007</u>

 performance of different generators, tunes, parton showers

 measurement can be used as input to further improve these models

Summary

- jet observables are an important experimental probe for SM at highest energy & precision
- many measurements from CMS at \sqrt{s} = 13 TeV, targeting wide variety of jet observables
 - inclusive jet and dijet cross sections
 - jet multiplicity & transverse momentum spectra in multijet events
 - [□] jet substructure → density of parton emissions in *Lund jet plane*
- improved precision and extended kinematic reach, beneficial for:
 - ^{**D**} determinations of the *strong coupling constant* $\alpha_s(m_z)$ and *parton distributions* (PDFs)
 - probes of extensions to the SM in effective field theory
 - improvement of *MC generator modeling* of perturbative and non-perturbative effects

Thank you for your attention!

Backup

Inclusive jet production at $\sqrt{s} = 13 \text{ TeV}$ (R = 0.4)

Inclusive jet production at $\sqrt{s} = 13 \text{ TeV}$ (unfolding)

full 2D unfolding across jet p_T and |y|

response matrix depicts event migrations between the particle and detector levels

statistical correlations on particle-level spectra induced by the unfolding procedure

D. Savoiu

[4] CMS-PAS-SMP-22-007

[4] <u>CMS-PAS-SMP-22-007</u>

D. Savoiu

[4] <u>CMS-PAS-SMP-22-007</u>

CMS-PAS-SMP-22-007 [4]

D. Savoiu

comparison to predictions in the soft and

- collinear limit using the one-loop β function for the running of $\alpha_{\rm s}$
- qualitative description of emission density as a function of emission $k_{\rm T}$

10

k_⊤ [GeV]

50