Jet measurements in pp collisions from CMS

11th annual conference on Large Hadron Collider Physics | 22–26 May 2023 | Belgrade, Serbia

Daniel Savoiu on behalf of the CMS Collaboration
Why jets?

jet observables provide valuable experimental input for testing QCD & the Standard Model

- α_s and **parton distributions** of proton (PDFs)
 - **inclusive jet** cross sections → “counting jets”
 - **dijet** cross sections → topology provides handle on parton kinematics

- modeling of higher-order contributions
 - jet production known up to **NNLO** in pQCD
 - additional jets from hard radiation → **multijet** production

- improved understanding of perturbative & nonperturbative regimes
 - impact on **parton shower & hadronization** → jet **substructure**
Why jets?

Jet observables provide valuable experimental input for testing QCD & the Standard Model

- α_s and parton distributions of proton (PDFs)
 - inclusive jet cross sections → “counting jets”
 - dijet cross sections → topology provides handle on parton kinematics

- Modeling of higher-order contributions
 - jet production known up to NNLO in pQCD
 - additional jets from hard radiation → multijet production

- Improved understanding of perturbative & nonperturbative regimes
 - impact on parton shower & hadronization → jet substructure

This talk: personal selection of recent results from CMS
Inclusive jet production at $\sqrt{s} = 13$ TeV

- **double-differential** cross section measured as a function of jet p_T & rapidity y for anti-k_T jets with $R = 0.4$ & 0.7

- good experimental precision, `<5% uncertainty` in main measurement region
 - dominant uncertainty contribution from jet energy scale (JES)

Inclusive jet production at $\sqrt{s} = 13$ TeV

- comparison to fixed-order pQCD theory at **NNLO & NLO+NLL**
- + corrections for non-perturbative (NP) and electroweak (EW) contributions

- improved description of data at NNLO & reduced scale uncertainty
- some disagreement between global PDF sets, especially in high-p_T region
Inclusive jet production at $\sqrt{s} = 13$ TeV

- determination of PDFs & strong coupling constant up to NNLO
 \[\alpha_s(m_Z)_{\text{NNLO}} = 0.1166 \] (14) fit (7) model (4) scale (1) param.

 \[\chi^2 / n_{\text{dof}} = 1302 / 1118 \]

- with $t\bar{t}$ data: limits on Wilson coefficients for four-quark contact interactions
 - multiple coupling structures probed, no significant deviations

CMS SMEFT NLO 13 TeV jets & $t\bar{t}$ + HERA

- $\Lambda = 50$ TeV
- 95% CL fit+model+param. unc.
- 68% CL fit+model+param. unc.
- 68% CL fit unc. only
 - Axial vector-like
 - Vector-like
 - Left-handed

D. Savoiu
11th annual conference on Large Hadron Collider Physics | 22–26 May 2023
Dijet production at $\sqrt{s} = 13$ TeV

- **double- & triple-differential** cross section measured as a function of **dijet invariant mass $m_{1,2}$ & rapidity** for anti-k_T jets with $R = 0.4$ & 0.8

- disentangle regions of different momentum fractions x carried by partons \rightarrow PDF fits

Dijet production at $\sqrt{s} = 13$ TeV

- comparison to fixed-order theory predictions @ NNLO × NP × EW
- data generally well described by theory (here: $R = 0.8$)
Dijet production at $\sqrt{s} = 13$ TeV

- determination of PDFs & strong coupling constant @ NNLO (preliminary results)

$\alpha_s(m_Z)$

\[\alpha_s(m_Z)^{2D} = 0.1201 \pm 0.0012 \] (12

\[\chi^2 / n_{\text{dof}} = 1283 / 1094 \]

\[\alpha_s(m_Z)^{3D} = 0.1201 \pm 0.0010 \] (10

\[\chi^2 / n_{\text{dof}} = 1557 / 1167 \]

2D & 3D fit results largely compatible
Multijet production

- **jet multiplicity** measured in bins of leading jet p_T & azimuthal separation $\Delta\phi_{1,2}$
 - access up to 7 jets, even in back-to-back region
- compare models using conventional parton showers & **parton-branching** approach (PB) + TMDs
 - higher multiplicities not very well described
 - at low multiplicities, PB-TMD predictions @ NLO have similar accuracy as conventional models

<table>
<thead>
<tr>
<th>Generator</th>
<th>PDF</th>
<th>ME</th>
</tr>
</thead>
<tbody>
<tr>
<td>PYTHIA8 [23]</td>
<td>NNPDF 2.3 (LO)</td>
<td>LO 2 \to 2</td>
</tr>
<tr>
<td>MADGRAPH+Py8 [4]</td>
<td>NNPDF 2.3 (LO)</td>
<td>LO 2 \to 2, 3, 4</td>
</tr>
<tr>
<td>MADGRAPH+CA3 [4]</td>
<td>PB-TMD set 2 (NLO) [1]</td>
<td>LO 2 \to 2, 3, 4</td>
</tr>
<tr>
<td>HERWIG++ [26]</td>
<td>CTEQ6L1 (LO)</td>
<td>LO 2 \to 2</td>
</tr>
<tr>
<td>MG5.aMC+Py8 (jj)</td>
<td>NNPDF 3.0 (NLO) [31]</td>
<td>NLO 2 \to 2</td>
</tr>
<tr>
<td>MG5.aMC+CA3 (jj)</td>
<td>PB-TMD set 2 (NLO) [1]</td>
<td>NLO 2 \to 2</td>
</tr>
<tr>
<td>MG5.aMC+CA3 (jj)</td>
<td>PB-TMD set 2 (NLO) [1]</td>
<td>NLO 2 \to 3</td>
</tr>
</tbody>
</table>

D. Savoiu
11th annual conference on Large Hadron Collider Physics | 22–26 May 2023
Multijet production

- jet p_T measured for up to 4 leading jets
 - in general not well described by any model @ LO
 - better description for 3rd & 4th jet with NLO matrix elements

<table>
<thead>
<tr>
<th>Generator</th>
<th>PDF</th>
<th>ME</th>
</tr>
</thead>
<tbody>
<tr>
<td>PYTHIA8 [23]</td>
<td>NNPDF 2.3 (LO)</td>
<td>LO 2 \rightarrow 2</td>
</tr>
<tr>
<td>MADGRAPH+Py8 [4]</td>
<td>NNPDF 2.3 (LO)</td>
<td>LO 2 \rightarrow 2, 3, 4</td>
</tr>
<tr>
<td>MADGRAPH+CA3 [4]</td>
<td>PB-TMD set 2 (NLO) [1]</td>
<td>LO 2 \rightarrow 2, 3, 4</td>
</tr>
<tr>
<td>HERWIG++ [26]</td>
<td>CTEQ6L1 (LO) [27]</td>
<td>LO 2 \rightarrow 2</td>
</tr>
<tr>
<td>MG5.aMC+Py8 (jj)</td>
<td>NNPDF 3.0 (NLO) [31]</td>
<td>NLO 2 \rightarrow 2</td>
</tr>
<tr>
<td>MG5.aMC+CA3 (jj)</td>
<td>PB-TMD set 2 (NLO) [1]</td>
<td>NLO 2 \rightarrow 2</td>
</tr>
<tr>
<td>MG5.aMC+CA3 (jjj)</td>
<td>PB-TMD set 2 (NLO) [1]</td>
<td>NLO 2 \rightarrow 3</td>
</tr>
</tbody>
</table>
Measurement of the Lund jet plane density

- **Lund jet plane** represents phase space of emissions inside jets
 - anti-\(k_T\) jets are declustered iteratively using the *Cambridge–Aachen* algorithm
 - the density of emissions is measured as a function of \(\ln(k_T / \text{GeV})\) and \(\ln(1 / \Delta R)\) as:
 \[
 \frac{1}{N_{\text{jets}}} \frac{d^2 N_{\text{emissions}}}{d \ln(k_T) d \ln(R/\Delta R)} \approx \frac{2}{\pi} C_R \alpha_s(k_T).
 \]

Applications

- improve modeling of parton shower, hadronization, underlying event
- heavy-flavor tagging due to unique signatures of highly boosted color-singlet particles
- test running of \(\alpha_s\) via analytical predictions in perturbative QCD

Measurement of the Lund jet plane density

- measurement performed for both small ($R = 0.4$) and large-radius jets ($R = 0.8$)
- density measured for jets with $p_T > 700$ GeV & $|y| < 1.7$
 - only charged-particle constituents of jets are used → increased resolution
- multi-dimensional unfolding to obtain density at particle level
Measurement of the Lund jet plane density

- performance of different generators, tunes, parton showers
- measurement can be used as input to further improve these models
Summary

- jet observables are an important experimental probe for SM at highest energy & precision

- many measurements from CMS at $\sqrt{s} = 13$ TeV, targeting wide variety of jet observables
 - inclusive jet and dijet cross sections
 - jet multiplicity & transverse momentum spectra in multijet events
 - jet substructure \rightarrow density of parton emissions in Lund jet plane

- improved precision and extended kinematic reach, beneficial for:
 - determinations of the strong coupling constant $\alpha_s(m_Z)$ and parton distributions (PDFs)
 - probes of extensions to the SM in effective field theory
 - improvement of MC generator modeling of perturbative and non-perturbative effects

Thank you for your attention!
Backup
Inclusive jet production at $\sqrt{s} = 13$ TeV ($R = 0.4$)

- comparison to fixed-order pQCD theory at **NNLO & NLO+NLL**
 - corrections for non-perturbative (**NP**) and electroweak (**EW**) contributions
Inclusive jet production at $\sqrt{s} = 13$ TeV (unfolding)

Full 2D unfolding across jet p_T and $|y|$.

Response matrix depicts event migrations between the particle and detector levels.

Statistical correlations on particle-level spectra induced by the unfolding procedure.
Measurement of the Lund jet plane density

CMS Preliminary

138 fb⁻¹ (13 TeV)

- **generators**
 - AK4 jets
 - $p_T^{jet} > 700$ GeV, $|y_{jet}| < 1.7$
 - 0.084 < ln(k_T/GeV) < 0.584
 - 1.09 < k_T < 1.79 GeV
 - Data
 - HERWIG7 CHI
 - PYTHIA8 CP5
 - PYTHIA8 CPS
 - PYTHIA8 CPS (FSR up)
 - PYTHIA8 CPS (ISR down)
 - PYTHIA8 CP5 (FSR down)
 - PYTHIA8 CP5 (ISR down)

- **tunes**
 - PYTHIA8 CUEP8M1
 - PYTHIA8 CP5 (ISR down)

- **recoil schemes**
 - Data
 - HERWIG7 recoil schemes
 - q scheme
 - q, q
 - q, q' + veto

- **parton showers**
 - Data
 - PYTHIA8+DIRE
 - PYTHIA8+VINCIA
 - 0.084 < ln(k_T/GeV) < 0.584
 - HERWIG7 dipole
 - SHERPA

- **Data**
 - $p_T^{jet} > 700$ GeV, $|y_{jet}| < 1.7$
 - 0.084 < ln(k_T/GeV) < 0.584
 - 1.09 < k_T < 1.79 GeV

D. Savoiu
Measurement of the Lund jet plane density

D. Savoiu
Measurement of the Lund jet plane density

D. Savoiu

CMS Preliminary

138 fb⁻¹ (13 TeV)

p_{T,j} > 700 GeV, |y_j| < 1.7

2.333 < ln(R/ΔR) < 2.667

0.056 < ΔR < 0.078

Data

HERWIG7 CH3

PYTHIA8 CP5

PYTHIA8 CP5 (FSR up)

PYTHIA8 CP5 (FSR down)

PYTHIA8 CP5 (ISR up)

PYTHIA8 CP5 (ISR down)

R) < 3.000

2.667 < ln(R/ΔR) < 3.000

0.040 < ΔR < 0.056

Data

HERWIG7 recoil schemes

p scheme

q scheme

q + veto

recoil schemes

PYTHIA8+DIR EXTRACTION

PYTHIA8+VINCIA

HERWIG7 dipole

SHERPA

parton showers

tunes

generators

Measurement of the Lund jet plane density

Measurement of the Lund jet plane density

Measurement of the Lund jet plane density

- comparison to predictions in the soft and collinear limit using the one-loop β function for the running of α_s
- qualitative description of emission density as a function of emission k_T