Jet production in pp collisions using the ALICE detector

Austin Schmier on behalf of the ALICE collaboration University of Tennessee Knoxville

May 21, 2023

A. Schmier (UTK)

Jets - pp - ALICE

ALICE

May 21, 2023 1

Initial conditions \rightarrow Hard scattering \rightarrow Fragmentation \rightarrow Hadronization \rightarrow Reconstructed final state

· · · · · · · · · ·

- To accurately predict the final state (jets) we need an understanding of all formation steps
- ALICE jet reconstruction
 - Charged jets: ITS+TPC tracks
 - Full jets: ITS+TPC tracks & EMCal clusters
 - Clustering: anti-k_Talgorithm

A. Schmier (UTK)

Ore

eee

Inclusive cross-section measurements

 pp measurements are sensitive to all parts of jet formation → Useful to constrain MC calculations

- Spectra get harder with increased collision energy
- Important reference for larger collision systems

Comparison with MC Generators

• PYTHIA alone over-predicts data by $\approx 50\%$

- Similar behavior seen at other collision energies
- Predictions including POWHEG agree with data within uncertainties
- ightarrow Needs NLO correction

Cross-section ratios

Cross-section ratios R = 0.4 R = 0.2

$$\Delta R_{axis} = \sqrt{(y_{A1} - y_{A2})^2 + (\phi_{A1} - \phi_{A2})^2}$$

WTA Au

- Interesting at low momentum where non-perturbative effects play a larger role
- Jets become more collimated with increasing momentum
- $\rightarrow\,$ Sensitive to fragmentation & hadronization, reproduced by MC models

Cross-section ratios

- Interesting at low momentum where non-perturbative effects play a larger role
- Jets become more collimated with increasing momentum
- $\rightarrow\,$ Sensitive to fragmentation & hadronization, reproduced by MC models

High p_{τ} : Perturbative regime

- High p_⊤: Distributions overlap
- Low p_T: Significant R-dependence
- Despite grooming, low p_Tjets still less collimated

Soft drop (SD) grooming

High p_r:

- High p_τ: Distributions overlap
- Low p_τ: Significant R-dependence
- Despite grooming, low p_Tjets still less collimated

Low p_{τ} : Non-Perturbative regime

Probing soft radiation with the jet axis

- Standard axis \rightarrow all anti- k_{τ} jet constituents
- SD axis \rightarrow removes soft, wide-angle radiation
- Winner takes all (WTA) axis
 - \rightarrow Only sees energetic collinear radiation

Probing soft radiation with the jet axis

• Direct sensitivity to QCD scales

- Perturbative (large angular distance)
- Non-perturbative (small angular distance)
- $\bullet~\mbox{Perturbative regime} \rightarrow \mbox{good}$ agreement with pQCD
- \bullet Non-perturbative regime \rightarrow good agreement with AxR_L
- Both models break down at the extremes
- Good overall agreement with MC generators

 \hat{n}_2

Direct sensitivity to QCD scales

- Perturbative (large angular distance)
- Non-perturbative (small angular distance)
- $\bullet~\mbox{Perturbative regime} \rightarrow \mbox{good}$ agreement with pQCD
- $\bullet~\text{Non-perturbative regime} \to \text{good agreement with } AxR_L$
- Both models break down at the extremes
- Good overall agreement with MC generators

 \hat{n}_2

How does high multiplicity affect the shape of jet observables?

- Softer jet fragmentation in HM vs. MB events
- More event activity = more soft particles created

(HM)

1.15 F

1.05

0.95 F

0.9

0.8

• Higher probability of rare jet events

Summary

- Inclusive jet measurements can help us understand jet formation as a whole and constrain important values
- Jet substructure allows us to separate and individually study different QCD processes
- High multiplicity studies allow us to look for behavior typically seen in heavy-ion events
- There is a rough agreement with models, but room for improvement

High Multiplicity Jet Production

arXiv:2202.01548