

Overview

- **The LHCb detector**
- Latest jet measurements
 - Multidifferential study of identified charged hadron distributions in Z-tagged jets in proton-proton collisions at $\sqrt{s} = 13$ TeV
 - Study of Z bosons produced in association with charm in the forward region
 - Measurement of bb- and $c\bar{c}$ -dijet differential cross-sections in the forward region of pp collisions at $\sqrt{s} = 13$ TeV
- Conclusions

The LHCb detector

- \bullet

- \bullet
- Muon ID efficiency: 97% with 1-3% $\mu \rightarrow \pi$ misidentification
- Electron ID efficiency: 90% with 5% $h \rightarrow e$ misidentification

DAVIDE ZULIANI

JINST 3 (2008) S08005, INT. J. MOD: PHYS. A 30, 1530022 (2015), CERN-LPCC-2018-04

The LHCb detector and QCD

- Parton Distribution Functions (PDFs) are a fundamental input for LHC experiments
 - Must be determined from experiments!
- LHCb allows to test perturbative QCD (pQCD) predictions in a phase space $(2 < \eta < 5)$ complementary to other experiments
- PDFs and proton structure can be studied in two different kinematic regions:
 - At high x values, comparison with other experiments
 - At low x values and high Q^2 , unexplored by other experiments
- Also, at LHCb both *pp* collisions and heavy ions!

DAVIDE ZULIANI

<u>JINST 3 (2008) S08005, INT. J. MOD: PHYS. A 30, 1530022 (2015), CERN-LPCC-</u>

Charged hadron distributions in Z-tagged jets

- Several motivations:
 - Extending the previous measurement of non-identified lacksquarecharged hadron
 - Excellent hadron identification performance for LHCb
 - Access Transverse Momentum Dependent Fragmentation Functions (TMD FF) for hadrons
 - Access flavour dependent hadron production mechanisms
- Approximately 1.6 fb^{-1} of data

	old (published)	new (this analy
\sqrt{s}	8 TeV	$13 { m TeV}$
j_T and z distributions	1D	1D and 2D
PID	non-identified h^\pm	non-identified and identif

ysis)

fied π^{\pm} , $K^{\pm} p^{\pm}$

$$\mathbf{z} = \frac{p_{jet} \cdot p_h}{|p_{jet}|^2}$$

$$j_T = \frac{|p_{jet} \times p_h|}{|p_{jet}|}$$

$$r = \sqrt{(\phi_{jet} - \phi_h)^2 + (y_{jet} - y_h)^2}$$

Charged hadron distributions in Z-tagged jets

- Distributions are measured for pions, kaons and protons
- Standard selection requirements for Z boson and jets

Muons	Z ⁰
$p_T > 20 \text{ GeV}$	60 <
$2 < \eta <$ 4.5	N
$\sqrt{PERR2}/P < 0.1$	
TRPCHI2 > 0.01	
ISMUON	
L0Muon Trigger	
Hlt1SingleMuon Trigger	
HIt2SingleMuon Trigger	

- Additional requirement: $\Delta \phi_{Z+iet} > 7\pi/8$ to select away-side jets
- Jet Fragmentation Functions (JFF) measured differentially

DAVIDE ZULIANI

 \rightarrow ZMuMuLine Jet→StdJets $M_{\mu\mu} < 120 \,\, {
m GeV}$ $p_T^{reco} > 15 \text{ GeV}$ $\rightarrow p_T^{true} > 20 \text{ GeV}$ $\mathsf{um} \mathsf{PVs} == 1$ $2.5 < \eta < 4$ $\Delta R_{jet-\mu^{\pm}} > 0.5$ $f(z, j_{\rm T}) = \frac{\mathrm{d}\sigma}{\mathrm{d}\mathcal{P}\mathcal{S}\,\mathrm{d}z\,\mathrm{d}j_{\rm T}} \Big/ \frac{\mathrm{d}\sigma}{\mathrm{d}\mathcal{P}\mathcal{S}},$ $F(z) = \int \mathrm{d}j_{\rm T}\,f(z, j_{\rm T}) = \frac{\mathrm{d}\sigma}{\mathrm{d}\mathcal{P}\mathcal{S}\,\mathrm{d}z} \Big/ \frac{\mathrm{d}\sigma}{\mathrm{d}\mathcal{P}\mathcal{S}}$ $F(j_{\rm T}) = \int \mathrm{d}z\,f(z, j_{\rm T}) = \frac{\mathrm{d}\sigma}{\mathrm{d}\mathcal{P}\mathcal{S}\,\mathrm{d}j_{\rm T}} \Big/ \frac{\mathrm{d}\sigma}{\mathrm{d}\mathcal{P}\mathcal{S}}$ $\mathrm{d}N_{\mathrm{had}}(z,j_{\mathrm{T}})$ $\mathrm{d}N_{\mathrm{had}}(z)$ $f(z, j_{
m T}) = rac{1}{N_{Z+
m jet}} -$, F(z) = $F(j_{\rm T}) =$ $\overline{N_{Z+ ext{jet}}}$ $\mathrm{d}z$ $N_{Z+
m jet}$ $\mathrm{d} z \, \mathrm{d} j_{\mathrm{T}}$

Charged hadron distributions in Z-tagged jets

- z and $j_{\rm T}$ distributions for non-identified hadrons
 - z distributions show a humpbacked structure due to both color coherence and kinematic requirements
 - Overall increase in particle production in all regions of $j_{\rm T}$
 - Comparisons with $\sqrt{s} = 8$ TeV show a general similarity in shape

DAVIDE ZULIANI

Jet measurements in pp collisions from LHCb

- z and $j_{\rm T}$ distributions for JFFs and ratios shown for different hadrons
- Underestimation (overestimation) of charged pions (kaons and protons) by PYTHIA8
- An analysis is ongoing also tagging jets

DAVIDE ZULIANI

Z+c-jet production

- Proton charm content can be:
 - **extrinsic,** produced by gluon splitting $g \rightarrow c\bar{c}$
 - **intrinsic (IC),** a $|uudc\bar{c}\rangle$ component bound to valence quarks
- The existence of an IC component would affect many processes studied at LHC
- So far, IC component in the proton has not been excluded
- Particularly, an IC component would manifest itself for x > 0.1

LHCP (BELGRADE) - MAY 22, 2023

Therefore, the idea is to study high-x charm quarks to search for IC

The Z + c-jet production in the forward region is sensitive to the high x and high Q^2 intrinsic charm component \rightarrow **feasible at LHCb!**

DAVIDE ZULIANI

Z+c-jet production

- one jet
- technique

bb and cc differential cross-section

- The main idea is to study the inclusive decay of high mass resonances in bb and $c\bar{c}$ jet pairs
- It is possible to study lower invariant masses w.r.t. ATLAS & CMS
- QCD background has an important role in this analysis
- Background from $Z \rightarrow b\bar{b} \ (c\bar{c})$ is also considered
- Directly trigger on di-jets
- Exploit good LHCb jet tagging performances

- A first study has been performed to measure bb and $c\bar{c}$ differential cross sections with 2016 data
- Fit to combination of two MVA discriminators (BDTs) t_0 and t_1 to get flavour composition:

$$t_0 = \mathsf{BDT}_{bc|q}(j_0) + \mathsf{BDT}_{bc|q}(j_1)$$
$$t_1 = \mathsf{BDT}_{b|c}(j_0) + \mathsf{BDT}_{b|c}(j_1)$$

bb and $c\bar{c}$ differential cross-section

- Differential cross sections are measured and compared with simulations from Pythia and aMC@NLO
- Results are computed for different di-jets kinematic variables:

leading jet p_T

di-jet invariant mass m_{ii}

 $\Delta y^* = 1/2 |y_0 - y_1|$

leading jet η

- The cross section ratios $R = \sigma_{b\bar{b}}/\sigma_{c\bar{c}}$ are also computed as functions of kinematic variables
- Results are compatible with expectations
- This is the first inclusive, direct measurement of $c\bar{c}$ differential cross section at a hadron collider
- A similar approach will include high mass resonances (such as the Higgs boson) decaying to bb and $c\bar{c}$ di-jets

DAVIDE ZULIANI

Jet measurements in pp collisions from LHCb

Conclusions

- LHCb can be considered as a General Purpose **Forward Detector**
 - Not only flavour physics, QCD and pQCD are tested in a region complementary to ATLAS and CMS
 - Interesting environment to test PDFs and proton \bullet structure
- A lot of interesting results (these are just the latest!!)
 - Identified charged hadron distributions in Z-tagged jets lacksquareevents
 - Intrinsic charm component in proton content at high lacksquarerapidities using Z + c-jet events
 - Measurement of differential heavy flavour di-jets cross lacksquaresections

DAVIDE ZULIANI

Jet measurements in pp collisions from LHCb

