

Flavoured jet algorithms

Giovanni Stagnitto

LHCP 2023, Belgrade, 22-26.05.2023

"An (anti- k_t) jet is flavoured if it contains at least one heavy hadron within $\Delta R < R$ with $p_T > p_{T,cut}$ "

This definition is adopted as "true" label in MC samples.

These samples are then used to train ML architectures ("high-level taggers"), which exploit low-level variables as inputs.

"An (anti- k_t) jet is flavoured if it contains at least one heavy hadron within $\Delta R < R$ with $p_T > p_{T,cut}$ "

This definition is both **soft and collinear (IRC) unsafe** (in massless perturbative QCD calculations)

i.e. arbitrary soft and/or collinear emissions alter the flavour of jets

"An (anti- k_t) jet is flavoured if it contains at least one heavy hadron within $\Delta R < R$ with $p_T > p_{T,cut}$ "

 $g \rightarrow q\bar{q}$ is always flavoured even in the collinear limit

An even-tag veto in calculations is enough to fix this issue

"An (anti- k_t) jet is flavoured if it contains at least one heavy hadron within $\Delta R < R$ with $p_T > p_{T,cut}$ "

 $q \rightarrow qg$ collinear with a hard gluon leads to a flavourless jet

With $p_{T,cut}$, it requires a fragmentation function, as we are identifying a particle

Without $p_{T,cut}$, any IRC safe flavour-agnostic algorithm will recombine the qg pair

"An (anti- k_t) jet is flavoured if it contains at least one heavy hadron within $\Delta R < R$ with $p_T > p_{T,cut}$ "

Soft large-angle $g \rightarrow bb$ polluting the flavour of other jets

No way of fixing this issue within a flavouragnostic jet algorithm!

Solution: the flavour- k_t algorithm

[Banfi, Salam, Zanderighi (hep-ph/0601139)]

Flavour-aware distance:

 $d_{ij}^{(F,\alpha)} = \frac{\Delta y_{ij}^2 + \Delta \phi_{ij}^2}{R^2} \times \begin{cases} \max(k_{ti}, k_{tj})^{\alpha} \min(k_{ti}, k_{tj})^{2-\alpha}, & \text{softer of } i, j \text{ is flavoured}, \\ \min(k_{ti}^2, k_{tj}^2), & \text{softer of } i, j \text{ is flavourless} \end{cases}$

at the price of jets with different kinematics i.e. not anti- k_t jets.

In the past year, several alternative proposals!

[Caletti, Larkoski, Marzani, Reichelt (2205.01109)] [Caletti, Larkoski, Marzani, Reichelt (2205.01117)] [Czakon, Mitov, Poncelet (2205.11879)] [Caola, Grabarczyk, Hutt, Salam, Scyboz, Thaler (to appear)] [Gauld, Huss, GS (2208.11138)]

> I will briefly introduce them, by then focusing on the last one

[Caletti, Larkoski, Marzani, Reichelt

(2205.01109)]

Use Soft Drop to remove soft quarks, by using JADE as reclusters

Q

this system has the smallest invariant mass and passes SD [Caletti, Larkoski, Marzani, Reichelt

(2205.01117)]

Flavour of jet = flavour of particle(s) lying along the Winner-Take-All (WTA) axis

Soft safe, but collinear unsafe: requires usage of suited fragmentation functions

 \overline{q}

soft quark can

alter the flavour

[Czakon, Mitov, Poncelet (2205.11879)]

"Flavour anti- k_t ": modify anti- k_t distance when flavoured particles involved

$$d_{ij} = R^2 \min(k_{T,i}^{-2}, k_{T,j}^{-2}) \cdot S_{ij}^a, \quad d_B = k_{T,i}^{-2}$$

where $S_{ij} \neq 1$ only when *i* and *j* are of opposite flavour

$$S_{ij}^{a} = 1 - \theta(1 - \kappa) \cos\left(\frac{\pi}{2}\kappa\right), \quad \kappa = \frac{1}{a} \frac{k_{T,i}^{2} + k_{T,j}^{2}}{2k_{T,\max}^{2}}$$

One recovers (IRC flavour unsafe) anti- k_t jets when $a \rightarrow 0$

"Flavour neutralisation"

from Ludovic Scyboz slides at Moriond QCD 2023

"Flavour dressing"

Flavour assignment *factorised* from jet reconstruction (exact anti- k_t kinematics by construction)

Inputs: *flavour-agnostic jets* (jets obtained with any IRC safe algorithm) and *flavour inputs* (e.g. b- or c-quarks, stable heavy-flavour hadrons, ...)

Preliminary step: we first build flavour clusters to recombine flavour inputs with radiation close in angle, but without touching the soft particles (thanks to a Soft Drop condition [Larkoski, Marzani, Soyez, Thaler 1402.2657]):

$$\frac{\min(p_{t,a}, p_{t,b})}{(p_{t,a} + p_{t,b})} > z_{\text{cut}} \left(\frac{\Delta R_{ab}}{\delta R}\right)^{\beta}$$

Dressing step: in order to assign flavour to jets, we run a sequential recombination algorithm with flavour- k_t -like distances between jets and flavour clusters.

IRC safety test in $e^+e^- \rightarrow \text{jets}$

= vanishing "bad" identification of flavours in the fully unresolved regime

only soft and/or collinear radiation

Any gen- k_t algo is safe (no additional flavour in the event)

IRC safety test in $e^+e^- \rightarrow \text{jets}$

= vanishing "bad" identification of flavours in the fully unresolved regime

only soft and/or collinear radiation $e^+ e^- \rightarrow jets at \mathcal{O}(a_s^2)$ Durham (k_{T}) jets 10³] naive 4 Ľ dress [a=2] (1/σ_{Born}) dσ_{bad}/dlog(y₃) 3 2 1 0 -20 -18 -16 -14 -12 -10 -8 -6 -4 -2 $log(y_3)$

Naive dressing unsafe, flavour dressing safe!

IRC safety test in $e^+e^- \rightarrow \text{jets}$

= vanishing "bad" identification of flavours in the fully unresolved regime

Naive dressing unsafer, flavour dressing still safe!

Systematic IRC safety tests

Numerical framework developed by Caola et al. has allowed to discover potentially problematic configurations at higher orders (CMP = "flavour anti- k_t "; GHS = "flavour dressing")

 \rightarrow as for GHS, work in progress to fix them

from Ludovic Scyboz slides at Moriond QCD 2023

(Massive calculations?)

In principle, massive calculations do not require an IRC safe flavour algorithm (screening effect due to m_q).

However, presence of large logarithms $\log(Q^2/m_q^2)$, spoiling the convergence of the perturbative series ($\alpha_s \log(m_Z^2/m_c^2) \sim 1$).

Benefits of massless calculations with IRC safe jet tagging:

- in the initial-state, a massless calculation allows for a resummation of $\log(Q^2/m_q^2)$ by PDF evolution (crucial in some cases e.g. when probing non-perturbative charm PDF)
- in the final-state, an IRC safe prescription implies a suppressed sensitivity on $\log(Q^2/m_q^2)$, both in fixed order and resummed calculations / parton showers.

Test flavour dressing in a realist scenario: Z + b-jet

[same setup of Gauld, Gehrmann-De Ridder, Glover, Huss, Majer (2005.03016)]

Remarkable agreement between (N)NLO and NLO+PS \rightarrow for most distributions largely insensitive to all-order corrections

First new result with flavour dressing: Z + c-jet at LHCb

Measurement sensitive to intrinsic charm in the proton

LHCb data at 13TeV for ratio $(d\sigma_{Z+c}/dy_Z) / (d\sigma_{Z+j}/dy_Z)$ [2109.08084] (With flavour dressing, both the numerator and the denominator feature the same sample of anti- k_t jets!)

Ratio $\sigma(Z + c - jet) / \sigma(Z + jet)$ at NNLO

[Gauld, Gehrmann-De Ridder, Glover, Huss, Rodriguez Garcia, GS (2302.12844)]

NNLO

NLO+Hw7

80

Final remarks

- At lot of recent proposals trying to solve the longstanding issue of a proper definition of flavoured jet
- IRC-safe definition allows for massless fixed-order calculations to be directly compared to experimental data (and a suppressed sensitivity on mass logarithms)
- A comparison between the different approaches would be beneficial, as well as a study of their experimental feasibility

BACKUP

LHCb fiducial cuts

Very unique fiducial region of the measurement:

Z bosons	$p_{\rm T}(\mu) > 20 \text{GeV}, 2.0 < \eta(\mu) < 4.5, 60 < m(\mu^+\mu^-) < 120 \text{GeV}$
Jets	$20 < p_{\rm T}(j) < 100 { m GeV}, 2.2 < \eta(j) < 4.2$
Charm jets	$p_{\rm T}(c \text{ hadron}) > 5 { m GeV}, \Delta R(j, c \text{ hadron}) < 0.5$
Events	$\Delta R(\mu, j) > 0.5$

LHCb fiducial cuts

Very unique fiducial region of the measurement:

Z bosons	$p_{\rm T}(\mu) > 20 \text{GeV}, 2.0 < \eta(\mu) < 4.5, 60 < m(\mu^+\mu^-) < 120 \text{GeV}$
Jets	$< 20 < p_{\rm T}(j) < 100 { m GeV}, \ 2.2 < \eta(j) < 4.2$
Charm jets	$p_{\rm T}(c \text{ hadron}) > 5 \text{GeV}, \Delta R(j, c \text{ hadron}) < 0.5$
Events	$\Delta R(\mu,j) > 0.5$

We explore a theory-driven cut:

 $p_{\rm T}(Z + jet) < p_{\rm T, jet}$

At Born level, the $p_{\rm T}$ of the Z+jet system vanishes, hence the cut limits the hard QCD radiation outside the LHCb acceptance in a dynamical way.

We refrain from making a comparison to the LHCb data

definition of flavoured jet not IRC safe significant contamination from MPI

Results: $p_{\rm T}^{\rm c-jet}$

[Gauld, Gehrmann-De Ridder, Glover, Huss, Rodriguez Garcia, GS (2302.12844)]

Results: y^Z

[Gauld, Gehrmann-De Ridder, Glover, Huss, Rodriguez Garcia, GS (2302.12844)]

Test in a realist scenario: Z + b-jet

[same setup of Gauld, Gehrmann-De Ridder, Glover, Huss, Majer (2005.03016)]

Some sensitivity observed in p_T^Z , *j*likely due to:

Even if IRC finite, it leads to large migration of (unflavoured)-jet into the *b*-jet sample.

Test in a realist scenario: Z + b-jet

[same setup of Gauld, Gehrmann-De Ridder, Glover, Huss, Majer (2005.03016)]

Results: η^{c-jet}

[Gauld, Gehrmann-De Ridder, Glover, Huss, Rodriguez Garcia, GS (2302.12844)]

The flavour-k_t algorithm

[Banfi, Salam, Zanderighi (hep-ph/0601139)]

1. Introduce a distance measure $d_{ij}^{(F)}$ between every pair of partons *i*, *j*:

$d_{ij}^{(F,lpha)} = (\Delta \eta_{ij}^2 + \Delta \phi_{ij}^2) \times \begin{cases} \max(k_{ti}, k_{tj})^{lpha} \min(k_{ti}, k_{tj})^{2-lpha}, \\ \min(k_{ti}^2, k_{tj}^2), \end{cases}$	softer of i, j is flat softer of i, j is flat	avoured, avourless, (17)
as well as distances to the two beams,		
$d_{iB}^{(F,\alpha)} = \begin{cases} \max(k_{ti}, k_{tB}(\eta_i))^{lpha} \min(k_{ti}, k_{tB}(\eta_i))^{2-lpha}, \\ \min(k_{ti}^2, k_{tB}^2(\eta_i)), \end{cases}$	i is flavoured, i is flavourless,	(18)

and an analogous definition of $d_{i\bar{B}}^{(F,\alpha)}$ involving $k_{t\bar{B}}(\eta_i)$ instead of $k_{tB}(\eta_i)$ (both defined as in eqs. (15) and (16)).⁹ As in section 2 we have introduced a class of measures, parametrised by $0 < \alpha \leq 2$.

- 2. Identify the smallest of the distance measures. If it is a $d_{ij}^{(F,\alpha)}$, recombine *i* and *j*; if it is a $d_{iB}^{(F,\alpha)}$ ($d_{i\bar{B}}^{(F,\alpha)}$) declare *i* to be part of beam $B(\bar{B})$ and eliminate *i*; in the case where the $d_{iB}^{(F,\alpha)}$ and $d_{i\bar{B}}^{(F,\alpha)}$ are equal (which will occur if *i* is a gluon), recombine with the beam that has the smaller $k_{tB}(\eta_i)$, $k_{t\bar{B}}(\eta_i)$.
- 3. Repeat the procedure until all the distances are larger than some d_{cut} , or, alternatively, until one reaches a predetermined number of jets.^{10,11}

Modified beam distance:

$$k_{tB}(\eta) = \sum_{i} k_{ti} \left(\Theta(\eta_i - \eta) + \Theta(\eta - \eta_i) e^{\eta_i - \eta} \right)$$
$$k_{t\bar{B}}(\eta) = \sum_{i} k_{ti} \left(\Theta(\eta - \eta_i) + \Theta(\eta_i - \eta) e^{\eta - \eta_i} \right)$$

IRC flavour safe to all orders, **but** different kinematics (because new distance)

The flavour dressing algorithm

[Gauld, Huss, GS (2208.11138)]

Flavour assignment *factorised* from jet reconstruction: we assign flavour to flavour-agnostic jets in an IRC safe way

Inputs:

flavour agnostic jets $\{j_k\}$, flavoured clusters $\{\hat{f}_i\}$, association criterion, accumulation criterion

Run a sequential recombination algorithm with flavour- k_t -like distances:

- $d(\hat{f}_i, \hat{f}_j)$ between flavoured clusters;
- $d(\hat{f}_i, \hat{j}_k)$ if flavoured cluster \hat{f}_i associated to jet j_k
- $d_B(\hat{f}_i)$ if \hat{f}_i not associated to any jet

Finally, assign flavour to jet j_k according to collected tag_k and accumulation criterion

- Flavour agnostic jets {*j_k*}: set of jets obtained with an IRC safe jet algorithm (e.g. gen-*k_i* family), possibly after a fiducial selection.
- Flavoured clusters $\{\hat{f}_i\}$
- Association criterion
- Accumulation criterion

- Flavour agnostic jets $\{j_k\}$
- Flavoured clusters {*f̂_i*}: built out of quarks (e.g. c, b) or stable heavy-flavour hadrons (e.g. D, B), by dressing them with radiation close in angle, but without touching the soft particles.

Exploiting the Soft Drop criterion [Larkoski, Marzani, Soyez, Thaler 1402.2657]

"Naked" flavoured objects are collinear unsafe

$$\frac{\min(p_{t,a}, p_{t,b})}{(p_{t,a} + p_{t,b})} > z_{\text{cut}} \left(\frac{\Delta R_{ab}}{\delta R}\right)^{\beta}$$

- Association criterion
- Accumulation criterion

- Flavour agnostic jets $\{j_k\}$
- Flavoured clusters $\{\hat{f}_i\}$
- Association criterion: whether \hat{f}_i is "associated" to j_k At parton-level simply if \hat{f}_i is a constituent of j_k Other options: $\Delta R(\hat{f}_i, j_k) < R_{tag}$, ghost association, ...

Flavour assignment based only on association is soft unsafe

• Accumulation criterion

- Flavour agnostic jets $\{j_k\}$
- Flavoured clusters $\{\hat{f}_i\}$
- Association criterion
- Accumulation criterion: how to "sum" flavours
 - sum flavoured if unequal number of f and \bar{f} (need charge information)
 - sum flavoured if odd number of f or \overline{f} (if no charge information)

Definition of flavoured cluster \hat{f}_i

- 1. Initialise a set with all the flavourless objects p_i (particles used as input to jets) and all the flavoured objects f_i (bare flavours), avoiding double counting if necessary.
- 2. Find the pair with the smallest angular distance ΔR_{ab} :
 - flavourless p_a , p_b : combine p_a and p_b into a flavourless p_{ab} ;
 - flavoured f_a , f_b : remove both from the set;
 - flavoured f_a , unflavoured p_b : remove p_b from the set and check a Soft Drop criterion

$$\frac{\min(p_{t,a}, p_{t,b})}{(p_{t,a} + p_{t,b})} > z_{\text{cut}} \left(\frac{\Delta R_{ab}}{\delta R}\right)^{\beta}$$

to recombine collinear while preserving soft. [default: $\delta R = 0.1$, $z_{cut} = 0.1$, $\beta = 2$] If satisfied, combine f_a and p_b into a flavoured f_{ab} .

3. Iterate while there are at least two objects in the set until $\Delta R_{ab} > \delta R$. The momentum of \hat{f}_i is given by the accumulated momentum into f_i .

IRC sensitivity in $2 \rightarrow 2$ **QCD events** in pp

Flavour dressing approaches zero faster than a naive flavour tagging as $y_3^{k_t} \rightarrow 0$