
TOWARDS
ZERO-WASTE COMPUTING
Ana-Lucia Varbanescu
a.l.varbanescu@utwente.nl
with contributions from
Quincy Bakker, Nick Breed @ University of Amsterdam

mailto:a.l.varbanescu@utwente.nl

Computing is everywhere … and it’s not free!
• Top 10 videos on YouTube* consumed as much as 600-700 EU persons per year

• Training Alpha-Zero for a new game consumes as much as 100 EU persons per year

• A mid-size datacenter alone consumes as much energy as a small town
• And that is not considering purchasing and secondary operational costs (e.g., cooling)

• In 2019 Dutch datacenters combined consumed 3-times more energy than the
national railways
• And consumption increased by 80% in 3 years

• The ICT sector will reach 21% of the global energy consumption by 2030

The energy consumption of computing is substantial and
constantly increasing!

*https://en.wikipedia.org/wiki/List_of_most-viewed_YouTube_videos#Top_videos

Three types of stakeholders

System integrators
Offer the right mix of resources
for the application developers
and system operators.
Include efficient hardware to
enable different application
mixes.

System operators
Ensure efficient scheduling
of workloads on system
resources.
Harvest energy where
resources/systems are
massively underutilized.

Developers and users
Improve the energy efficiency
of their own codes, making use
of algorithmic, programming,
and hardware tools
Design and implement
applications able to adapt to
the available system resources

Agenda
• From performance to waste in computing

• Performance Engineering in a nutshell
• Is it really that complicated ?!

• A case-study for energy-harvesting

• Towards Zero-waste computing

Performance vs. waste in computing

More performance!
• More speed => “higher performance”

• More pixels => “better resolution”

• More functions => “more complexity”

• More accuracy => “better models”

• More realism => “better simulators”

We need want more compute !

Just buy a newer/bigger computer !
Run it “in the cloud” !

Or ask Ana, she’s a computer scientist !
This is inefficient!

Waste in computing

Unneccesary time (or energy) spent in (inefficient)
computing is compute waste.

We all can and must improve software and hardware
efficiency to minimize waste in computing!

To reduce compute waste, we must shift from
time-to-solution towards efficiency-to-solution

Why is compute efficiency challenging?
It is a nonfunctional requirement

Focuses on user-“irrelevant” issues like resource utilization, scalability, …
We all make a lot of excuses

It’s someone else’s problem
It’s just a matter of money
• More hardware, more people, more time

It’s easy to fix later
It’s “just engineering”

Requires effort,
and there’s (often) little glory in it.

… and new applications and new computing systems
emerge monthly …

Reducing waste in computing
Raise awareness
• Quantify (energy) efficiency
• Quantify waste

Improve compute efficiency
• Improve systems for the applications at hand
• Improve applications for the systems at hand

• Make applications more efficient
• Make applications share systems

• Co-design applications and systems

Introducing performance engineering

Application
specification

Final
code

fast

slow

Draft code

Performance
analysis

Code
tuning

slow

promising

Physicist

Performance
hacker

Bob

*Wishful thinking included…

Today’s approach to high-performance

Alice
Not sustainable!

Performance engineering provides*
methods and automated* tools to help performance-aware

software design and development for most users.

Performance engineering is a systematic, quantitative
approach for cost-effective design and development of

software systems that meet performance requirements.

Systematic approach?!

Systematic ….
1. Capture requirements
2. Monitor performance

(micro)benchmarking & hardware counters
3. Analyze feasibility

Performance modeling

4. Design and implement new algorithms
Parallel/distributed computing languages

5. Maximize code performance
Tool design and development

6. Document results
Metrics, visualization, user-interaction

, iterative…

Case-study:
Energy harvesting in heterogeneous systems

Improving systems
for the applications

at hand.

Nick Breed

Quincy Bakker

Thousands of Cores

Few
cores

Heterogeneous systems?
• A heterogeneous system = a CPU + a GPU (the starting point)
• An application workload = an application + its input dataset
• Workload partitioning = workload distribution among the processing units of a

heterogeneous system

How do we improve energy efficiency? Workload partitioning!

How do we improve energy efficiency? Energy harvesting!

Energy harvesting
• Basic assumptions

• Tasks run on different processors
• Idle processors waste energy
• Higher/lower operating frequencies
• => more/less power respectively
• => reduce or increase runtime respectively

• Opportunities
• Dynamic Voltage and Frequency Scaling (DVFS)
• Reducing operating frequencies in idle states may save energy
• No active task => no runtime increase

• Increasing operating frequencies in busy states may save energy
• Lower runtime => less time to consume energy

GPU-bound
(Matrix Multiply)

CPU-bound
(K-Means)

Approach
• Framework to monitor and improve the energy consumption of

heterogeneous applications
• Analyze application at runtime
• Use live execution data

• Determine application states
• CPU/GPU-utilization patterns

• Apply DVFS for this phases
• Observe energy changes

• Design policies to maximize energy consumption
• What, when, and how to apply DVFS

Analyze application

Identify phases

Select and apply
“right” frequency

Policies for energy
harvesting

State detection
• Monitoring framework
• Records performance variables: e.g., utilization rate, clock rate, ...

• Application state detection based on processor utilization and application events

• 5 states of interest
• CPU/GPU/BOTH IDLE
• ALL BUSY
• CPU BUSY WAIT

• State detection library
• Detects all 5 different states every 10ms

States of interest

IDLE

CPU_IDLE

GPU_IDLE

BUSY

BUSY_WAIT

Detect State CPU
Utilization

GPU
Utilization

High

GPU
Utilization

Low

Sync.
Active

High

Low

Low

High

Yes

No

From States to Actions
• Detected states are used to trigger energy harvesting actions

• Different states trigger different actions
• E.g., CPU_IDLE triggers the “lower CPU frequency” action

* Graph shows one execution of Matrix Multiply sourced from the NVIDIA CUDA Toolkit v10.2

From States to Actions
• Energy harvesting actions change the operating frequencies based on the

current state
• Busy states => increase the frequency
• Idle states => decrease the frequency

States

From States to Actions
• Changing operating frequencies affects power consumption

• Lower frequencies reduce power consumption

States

Actions

Empirical analysis
• Workload: 10 different applications from different benchmarking suites
• System: Geforce GTX 960 GPU and an AMD Ryzen 7 3700x CPU.
• Metrics of interest: runtime and energy consumption

• Reference implementation = “do nothing”
• Gain and/or loss against reference

• Five policies :
• Maximum Frequency
• System
• MinMax
• Ranked MinMax
• Scaled MinMax

Results

Results

Contributions & Lesson learned
• Heterogeneous computing => high performance, high energy consumption
• Energy harvesting can work

• Depends a lot on implementation
• More interesting question: Can we (/should we) explore trade-offs between

energy and performance ?
• Harvesting = how to keep performance fixed
• Energy budgets = how to maximize performance?

Git repository:
https://gitlab.qub1.com/vrije-universiteit/master-project/energymanager

Thesis:
https://gitlab.qub1.com/vrije-universiteit/master-project/thesis

https://gitlab.qub1.com/vrije-universiteit/master-project/energymanager
https://gitlab.qub1.com/vrije-universiteit/master-project/thesis

Case-study: Co-designing systems and applications

Improving systems
and applications

Improve systems for the applications at hand
Improve applications for the systems at hand

Make applications more efficient
Make applications share systems

Co-design applications and systems

Application
specification

Final
code

fast

slow

Draft code

Performance
analysis

Code
tuning

slow

promising

Physicist

Performance
hacker

Bob

*Wishful thinking included…

Today’s approach to high-performance

Alice
Not sustainable!

Performance engineering provides*
methods and automated* tools to help performance-aware

software design and development for most users.

(An ideal) Future (WiP)

Application
specificatio

n

Functional
requirements

Performance
requirements

Application
design

Performanc
e prediction

refinement
Domain
specialist

Performance
engineer

Automated
code generation
and tuning.

Final
application

Automated
tools

To conclude …

Take home message

• Performance and energy footprint matter!
• Be aware of your computational footprint
• Ask yourself whether you can/want to do better/more

• Performance engineering
• Is a multidisciplinary research field,
• which provides methods and tools to understand and improve performance,
• and can reduce waste in computing.

• Automation and generalization are the core challenges in today’s
performance engineering

to-the-office

Zero-waste computing
• Awareness: utilizing computing resources with little efficiency is equivalent to

wasting computing.

• Performance and efficiency: non-functional properties, such as performance
and efficiency, are essential to understand computing waste.

• Design-time: performance/efficiency must be essential concerns, like
functionality

• Stakeholders: domain-specialists/application owners must (also) take
responsibility in reducing waste in computing.

To do: Zero-waste computing
• Design and development:
“Build the right computing system for the job at hand”
• Better hardware
• Design and modeling to build the right infrastructure

• Better software
• Performance and energy analysis is essential to improve efficiency

• Better tools
• For design, analysis, and modeling

• Awareness:
“Acknowledge and improve the efficiency of ‘generic’ systems”
• Better metrics
• To demonstrate the waste in computing

• Better methods
• To analyse the complex tradeoffs between performance, energy, QoS, …

