Diffraction, elastic scattering at LHC

Anna Fehérkuti (Eötvös Loránd University, Wigner Research Centre for Physics) on behalf of ATLAS, CMS and LHCb Collaborations

May 22-26 2023

Diffraction at the LHC

Jet-gap-jet events

Photon-induced processes:

- WW / ZZ (quartic anomalous couplings)
- $-\gamma\gamma \rightarrow \gamma\gamma$
 - Axion-like particles (ALPs)
 - Quartic photon anomalous couplings
- $Z/\gamma + X$
- Central exclusive production (CEP) of $t\bar{t}$
- Coherent charmonium production in ultraperipheral PbPb collisions (PbPb UPC)
- Pion pair production
- Total cross section measurements
 - e-parameter
 - Nuclear slope

Generally pp, $\sqrt{s} = 13$ TeV (indicated, where different)

Experiments in scope

Jet-gap-jet events in diffraction I.

8

- Searching for rapidity gap between the two jets:
 - $p_{\tau^{jet}} > 40 \text{ GeV}, \eta^{jet1} \eta^{jet2} < 0,$ $1.4 < |\eta^{jet}| < 4.7$
- Exchange of a Balitsky-Fadin-Kuraev-Lipatov (BFKL) **Pomeron between jets:**
 - Hard color-singlet exchange
 - Two-gluon exchange in order to neutralize color flow
- Comparison with BFKL NLL (with LO impact factors) as implemented in ΡΥΤΗΙΑ
 - Fraction of jet-gap-jet events: $f_{CSE} = (N^{\# track < 3} - N^{\# track < 3}_{ULE}) / N^{tot}_{dijet}$
- Soft color interaction based models

Jet-gap-jet events in diffraction II.

- Powerful test of BFKL resummation
- Subsample requesting in addition at least one intact proton on either side of CMS: proton-gap-jet-gap-jet
- First observation (CMS): 11 events
 - Minimum one proton tagged with ~ 0.7 pb⁻¹

Very clean events

- Since mutiple-parton interactions are suppressed
- Might be the "ideal" way to probe BFKL
- *f*_{cse} extracted: ~3x larger than that of in the inclusive case

arXiv: 2211.16320 (CMS, SMP-21-014)

Exclusive production of W/Z pairs I.

- Search with fully hadronic decays
 - 2 jets back-to-back ($|1 \phi_{jj}/\pi| < 0.01$ R = 0.8, jet $p_{\tau} > 200$ GeV, 1126 GeV $< m_{jj}$
- Signal region defined by the correlation between the WW / ZZ system (invariant mass & rapidity) and tagged proton information
 - If WW / ZZ produced with large boost (many BSM scenarios): merged (single-area) jet
 - Highest branching fraction for fully hadronic decays, but without proton tagging: inaccessible mode (large QCD background, pileup)

Exclusive production of W/Z pairs II.

• Limits on SM cross section for $0.04 < \xi$ < 0.2, m(VV) > 1 TeV:

- (Fractional momentum loss: $\xi = \Delta p / p$ = horizontal displacement / horizontal dispersion)
- $\sigma_{\scriptscriptstyle WW} < 67~fb$
- σ_{zz} < 43 fb
- New limits on quartic anomalous couplings:
 - $-a_0^{W} / \Lambda^2 < 4.3 \cdot 10^{-6} \text{ GeV}^{-2}$
 - a_c^w / Λ^2 < 1.6 $\cdot 10^{-5}$ GeV $^{-2}$
 - a_0^z / Λ^2 < 0.9 ·10⁻⁵ GeV⁻²
 - a_{C}^{Z} / Λ^{2} < 4.0 ·10⁻⁵ GeV⁻²
- This means better constrains wrt analyses without proton tagging for the W case
- First obtained values in Z case from the exclusive channel

Phys. Rev. Lett. 129 (2022) 011801 (CMS, EXO-18-014) & (CMS-PAS-EXO-21-007) Exclusive γγ production at high mass with tagged protons - preliminary updates

• Search for exclusive diphoton production:

- Back-to-back ($|1 \phi_{\gamma\gamma}/\pi| < 0.005$ or 0.0025), high diphoton mass ($m_{\gamma\gamma} > 350$ GeV), matching in rapidity and mass between diphoton and proton information
- First limit on standard model light-by-light production cross section: 4.4 fb
- Previous limits on quartic photon anomalous couplings (~10 fb⁻¹):
 - $|\zeta_1| < 2.9 \cdot 10^{-13} \text{ GeV}^{-4} (\zeta_2 = 0)$
 - $|\zeta_2| < 6.0 \cdot 10^{-13} \text{ GeV}^{-4} (\zeta_1 = 0)$
- Using full Run 2 data (102.7 fb⁻¹):
 - $|\zeta_1| < 7.3 \cdot 10^{-14} \text{ GeV}^{-4} (\zeta_2 = 0)$
 - $|\zeta_2| < 1.5 \cdot 10^{-14} \text{ GeV}^{-4} (\zeta_1 = 0)$
- Limits on axion-like particles (ALPs) at high mass

Diffraction, elastic scattering at LHC (LHCP 2023) – Anna Fehérkuti

p

Axion-like particles with AFP

• Search for exclusive diphoton production:

- Proton tagging
- 150 GeV < $m_{_{YY}}$ < 1600 GeV

• Upper limit on ALP coupling constant: 0.04-0.09 TeV⁻¹

• Most significant excess ($m_x = 454 \text{ GeV}$):

- Local significance of 2.51σ

 Global *p*-value for the null hypothesis
 0.5

$Z/\gamma + X$ production

- Due to proton tagging the total mass can be reconstructed, which allows obtaining mass of Z+X
 - 0.6 TeV < m_{χ} < 1.6 TeV
 - Using missing mass distribution the search becomes modelindependent (X does not have to be reconstructed)

Upper limits on the cross section obtained:

- In the Z case 0.025-0.089 pb
- In the γ case 0.47-1.75 pb

CEP of tt with tagged protons

tt searched either in:

- Dilepton channel
- Lepton+jets (R = 0.4) decay mode (only *b*-jets, identified with DeepCSV algorithm)
- Combined results

Multivariate Analysis (MVA):

 Boosted Decision Tree (BDT) algorithm used to enhance signal content

• Upper bound on production cross-section: 0.59 pb

arXiv: 2206.08221 (LHCb, LHCb-PAPER-2022-012)

Coherent charmonium production in UPC (*PbPb*, $\sqrt{s_{NN}} = 5.02 \text{ TeV}$)

- Searching for coherent
 (a) production:
 - In 2.0 < *y** < 4.5
- Cross-sections of coherent production in *PbPb*, also compared to theoretical predictions:
 - $\sigma_{J/\psi}^{coh}$ = 5.965 ± 0.059 ± 0.232 ± 0.262 mb (most precise)
 - σ_{ψ}^{coh} = 0.923 ± 0.086 ± 0.028 ± 0.040 mb (first)
 - Uncertainties: stat, syst, lumi

Exclusive pion pair production ($\sqrt{s} = 7 \text{ TeV}$)

- Search for pions in correlation with protons detected by ALFA
 - First use of proton tagging to measure exclusive hadronic final state
- Cross section determined in two kinematic regions (defined by $p^{protons} \& p_T^{pions}$, y^{pions} and $m_{\pi\pi}$):
 - 4.8 \pm 1.0 (stat) ${}^{\scriptscriptstyle +0.3}{}_{\scriptscriptstyle -0.2}$ (syst) μb
 - 9 \pm 6 (stat) \pm 2 (syst) μb
- Tuning / excluding existing physical models not possible (limited statistical precision)
 - Used ones (GenEx, Dime) provide preliminary theoretical estimates

Total cross section measurements with ALFA

- Measuring elastic cross section in:
 - Special run: $\beta^* = 2.5$ km
 - Differentially in t Mandelstam: $2.5 \cdot 10^{-4} \text{ GeV}^2 < -t < 0.46 \text{ GeV}^2$

Optical theorem:

- Hadronic component of σ_{tot} connected to the imaginary part of the scattering amplitude in the forward direction: $\sigma_{tot} = 4\pi \operatorname{Im}[f_{el}(t)]_{t \to 0}$
- ϱ -parameter: $\varrho = \{ \operatorname{Re}[f_{el}(t)]_{t \to 0} / \operatorname{Im}[f_{el}(t)] \}_{t \to 0}$
- Nuclear slope: purely strong-interaction amplitude $f_N = (\varrho + i)\sigma_{tot}/\hbar c \exp[(-B|t| C|t|^2 D|t|^3)/2]$
- (Data-driven) fit on σ_{elast} distribution (with different parameterizations of *t*-dependence) leads to obtain:
 - $\sigma_{tot}(pp \rightarrow X) = 104.7 \pm 1.1 \text{ mb}$
 - 5.8 mb lower than TOTEM: 2.2 σ tension: unresolved (methodology lumi-dep @ ALFA vs lumi-indep @ TOTEM)

 $- \varrho = 0.098 \pm 0.011$

- Mostly sensitive to the shape of the elastic spectrum: agrees between TOTEM & ALFA
- Nuclear slope parameters:
 - $B = 21.14 \pm 0.13 \text{ GeV}^{-2}$
 - $C = -6.7 \pm 2.2 \text{ GeV}^{-4}$
 - $D = 17.4 \pm 7.8 \text{ GeV}^{-6}$

Conclusion

- Jet-gap-jet events seem to be a powerful test of BFKL resummation even if one proton has been tagged
- Using LHC as a $\gamma\gamma$ collider very clean events can be obtained, if we measure intact protons and produced particles in CMS/ATLAS
- Proton tagging draws us to higher selection efficiency even in hadronic production processes
- Search for exclusive $\gamma\gamma$, ZZ, WW, $t\bar{t}$ leads to best sensitivities to quartic anomalous couplings as well as to the productions of ALPs at high mass
- Even the ratio (determined for the first time) of the cross-sections between coherent J/ ψ and ψ (2S) production found to be compatible with theoretical models
- The commonly accepted models are in agreement with only one of the σ_{tot} or ϱ measurements, while a simultaneous fit was found to give a good description of both quantities
- It is still a question if the low value of ϱ can be attributed to the Odderon or other effects in strong interactions

Thank You for Your attention!

Questions are welcomed :)

Backups

Experiments in scope: ATLAS

Experiments in scope: CMS

Experiments in scope: LHCb

Jet-gap-jet events in diffraction I.

Data sample:

- 2015, pp, \sqrt{s} = 13 TeV, β^{*} = 90 m, PU \sim 0.05-0.1
- Integrated luminosity: 0.4 pb⁻¹
- Unprescaled dijet trigger:
 - At least 2 leading jets: both with p_{τ} > 32 GeV, $|\eta|$ < 5
 - 85% efficient for p_{τ} = 40 GeV
 - Fully efficient at $p_{\tau} > 55$ GeV
 - Efficiency obtained from zero bias (ZB) using random trigger in nonempty bunch crossings
 - Efficiency effects mostly cancel in $f_{CSE} \rightarrow$ no correction applied

Jet-gap-jet events in diffraction II.

Event selection: 341 events in sector 45, 336 events in sector 56

- Dijet event selection:
 - $p_T > 40$ GeV, $1.4 < |\eta| < 4.7$, $\eta^{\text{jet1}} \eta^{\text{jet2}} < 0$
 - Anti- k_{τ} algorithm, R = 0.4
- Intcat proton selection:
 - At least 1 proton in either sector 45 or 56 RP stations
 - Proton track crosses at least 2 overlapping RP units (ensuring reconstruction quality)
 - RP acceptance: $\xi < 0.2$, $-4 < t < -0.025 \text{ GeV}^2$
 - Fiducial selection (while beam position at x(RP) = y(RP) = 0):
 - Vertical RPs: 8 < |y(RP)| < 30 mm, 0 < |x(RP)| < 20 mm
 - Horizontal RPs: |y(RP)| < 25 mm, 7 < |x(RP)| < 25 mm
 - Particle flow (PF) calculations:
 - $\xi(PF)$ $\xi(RP)$ < 0 (reconstruction inefficiencies & acceptance limitations)

Jet-gap-jet events in diffraction III.

• Background treatment: databased

- Independent sample (same side "SS" jets) of the nominal one (opposite side "OS" jets)
 - Negative binomial distribution (NBD) fit
- Particle multiplicity distribution parametrization
 - Using NBD method estimate the standard diffractive dijet contribution that feature a central gap
- Avoiding model-dependent treatment of underlying event (ULE) activity, hadronization effects, etc. that have impact on the description of particle activity between jets in the MC events
- Separately for jet-gap-jet and protongap-jet-gap-jet events

Jet-gap-jet events in diffraction IV.

Systematic uncertainties:

Source	Je	t-gap-jet	(%)	Proton-gan-jet-gan-jet (%)
bource	$\Delta\eta_{ m jj}$	$p_{\mathrm{T}}^{\mathrm{jet2}}$	$\Delta \phi_{ m jj}$	roton gap jet gap jet (70)
Jet energy scale	1.0-5.0	1.5–6.0	0.5–3.0	0.7
Track quality	6.0-8.0	5.4-8.0	1.5-8.0	8
Charged particle $p_{\rm T}$ threshold	2.0-5.8	1.6-4.0	1.1 - 5.8	11
Background subtraction method	4.7–15	2–15	12	28
NBD fit parameters	0.8–2.6	0.6–1.7	0.1–0.6	7.0
Functional form of the fit	2–7.3	1.4-8.0	0.6–7.8	11.5
NBD fit interval				12
Calorimeter energy scale				5.0
Horizontal dispersion				6.0
Fiducial selection requirements				2.6
Total	7–23	9–15	12-18.5	35

Jet-gap-jet events in diffraction V.

		$p_{\rm T}^{\rm jet2}$ [GeV]	$\langle p_{\mathrm{T}}^{\mathrm{je}}$	$\langle {\rm e}^{{ m t}2} \rangle$ [GeV]	f _{CSE} [%]		$\Delta \phi_{ m jj}$	$\langle \Delta \phi_{ m jj} angle$	f _{CSE} [%]
		40–50		44.3	$0.64 \pm 0.01^{+0.11}_{-0.12}$	_	0.00-1.00	0.60	$0.54\pm0.11^{+0.09}_{-0.10}$
		50-60		54.5	$0.67\pm0.02^{+0.08}_{-0.10}$		1.00-2.00	1.64	$0.40\pm0.04^{+0.06}_{-0.06}$
		60–70		64.6	$0.77\pm0.04^{+0.08}_{-0.10}$		2.00-2.25	2.14	$0.41\pm0.04^{+0.08}_{-0.08}$
		70–80		74.5	$0.88 \pm 0.06^{+0.09}_{-0.09}$		2.25-2.50	2.36	$0.38\pm0.03^{+0.06}_{-0.07}$
		80-100		88.6	$0.72 \pm 0.05^{+0.04}_{-0.11}$		2.50-2.75	2.62	$0.40\pm0.02^{+0.05}_{-0.06}$
	CM	s 100–200		128.8	$0.77 \pm 0.07 ^{+0.09}_{-0.10}$		2.75-3.00	2.86	$0.57\pm0.02^{+0.07}_{-0.09}$
]	<u>3.00</u> –π	3.06	$1.03\pm0.02^{+0.14}_{-0.15}$
	$\begin{array}{c c} & & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$	CDF Vs = 0 .0 1.8 < m ^{jet1,2} ⋅	DF Vs = 0.63 TeV $8 < \eta^{\text{jet1,2}} < 3.5$, cone (R = 0.7) $\sqrt{s} = 0.63 \text{ TeV}$		$\Delta \eta_{jj}$	$\langle \Delta \eta_{\rm jj} \rangle$	f _{CSE} [%]		
		D0 $\sqrt{s} = 0.63$			3.0–3.5	3.24	$0.41 \pm 0.02^{+0.11}_{-0.04}$		
_		Б	$1.9 < \eta^{(c_1, c_2)} < 4.1, \text{ cone } (R = 0.7)$	3.5-4.0	3.75	$0.50 \pm 0.02^{+0.07}_{-0.07}$			
%			Ŧ	$1.8 < \eta^{\text{jet1,2}} < 3.5$, cone (R = 0.7)		4.0-4.5	4.25	$0.68 \pm 0.02^{+0.07}_{-0.06}$	
Щ.	Ē		₹	D0 $\sqrt{s} = 1.8$	TeV $(\mathbf{P} - 0.7)$		4.5-5.0	4.74	$0.71 \pm 0.03^{+0.06}_{-0.06}$
ູ ເ	$3 \begin{bmatrix} 1.9 < ^{2} \\ 0 \\ 1.5 < ^{jet1,2} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$ $2 \begin{bmatrix} 1.9 < ^{2} \\ 0 \\ 1.5 < ^{jet1,2} \\ 0 \\ 1.4 < ^{jet1,2} \\ 0 \\ 0 \\ 0 \end{bmatrix}$	δ	$CMS \sqrt{s} = 7 \text{ TeV}$	5.0-5.5	5.24	$0.86 \pm 0.04^{+0.06}$			
		$1.5 < \eta^{\text{jet1,2}} $	$.5 < \eta_{iet1,2}^{iet1,2} < 4.7$, anti-k _t (R = 0.5)		5 5-6 0	5.73	$0.93 \pm 0.04^{+0.06}$		
		CMS ∀s = 1 ; 1 4 < m ^{jet1,2}	3 TeV, 0.66 pb ⁻ ' < 4 7 anti-k (B = 0.4)	-	5.5 - 0.0	6.75	$0.93 \pm 0.04_{-0.09}$		
		¢	(117, 2117, 2111, 1)	-	6.0-6.5	6.22	$0.92 \pm 0.06^{+0.01}_{-0.09}$		
		• ♀ ♀ • • • • • • • • • • • • • • • • • • •	-			-	6.5–7.0	6.71	$0.69 \pm 0.07^{+0.15}_{-0.05}$
	20	40 60 80			160 180 200 220	-	7.0–7.5	7.22	$0.99 \pm 0.14^{+0.07}_{-0.15}$
		Ķ	D_{T}^{0}	⁻ [GeV]			7.5-8.0	7.73	$1.57 \pm 0.27 \substack{+0.35 \\ -0.56}$

Diffraction, elastic scattering at LHC (LHCP 2023) – Anna Fehérkuti

Exclusive production of W/Z pairs I.

• Data sample:

- 2016-2018, pp, $\sqrt{s} = 13 \text{ TeV}$
- Integrated luminosity: 100 fb⁻¹

Signal simulation: LO with FPMC

Background simulations:

- Dominant nonexclusive (from QCD multijet): LO, PYTHIA 8.205 (with CP5 tune)
- W/Z+jet: NLO, MadGraph5_aMC@NLO
- Top pair production: NLO, POWHEG
- SM contribution in ZZ/WW considered to be negligible
- Parton showers: PYTHIA
- Detector response:
 - Central CMS: Geant4
 - Forward protons: "direct simulation"

Exclusive production of W/Z pairs II.

Event selection:

- Jet selection:
 - $|\eta| < 2.5$, $p_{\tau} > 200$ GeV (choosing the 2 highest), R = 0.8
 - Acoplanarity $|1 \phi_{jj}/\pi| < 0.01$, p_T -ratio < 1.3, 1126 GeV < m_{jj}
 - 60 < pruned mass < 107 GeV (compatible with W/Z)
 - Subjettiness ratio $\tau_2/\tau_1 < 0.75$
- W/Z selection:
 - summed pruned jet masses $m(j_1) + m(j_2) = 166.6$ GeV differentiating between W/Z
- Proton selection:
 - ξ > 0.05
- Proton-jet matching:
 - |1 m(VV)/m(pp)| < 1.0
 - |y(pp) y(VV)| < 0.5

Exclusive production of W/Z pairs III/a.

Number of events	region	N _{evt} (2016)	N _{evt} (2017)	N _{evt} (2018)
Anti-acoplanarity sideband	δ	0.4 ± 0.4	1.6 ± 1.0	11.6 ± 2.6
Anti-pruned mass sideband	δ	0.5 ± 0.2	1.5 ± 0.3	11.3 ± 0.8
Event mixing	δ	0.5 (< 2.2)	1.8 (< 4.2)	14.3 ± 8.9
Expected signal	δ	1.7	2.2	16.1
$(a_0^{\rm W} / \Lambda^2 = 5 \times 10^{-6} {\rm GeV}^{-2})$				
Expected signal (SM)	δ	0.006	< 0.05	0.03
Anti-acoplanarity sideband	0	1.4 ± 0.9	10.0 ± 3.2	41.4 ± 5.7
Anti-pruned mass sideband	0	2.5 ± 0.8	7.1 ± 1.3	43.0 ± 3.0
Event mixing	0	2.4 ± 1.9	8.4 ± 6.3	49 ± 13
Expected signal	0	1.5	1.7	16.8
$(a_0^{\rm W}/\Lambda^2 = 5 \times 10^{-6} {\rm GeV}^{-2})$				
Expected signal (SM)	0	0.005	< 0.05	< 0.07

Exclusive production of W/Z pairs III/b.

Number of events	region	N _{evt} (2016)	N _{evt} (2017)	N _{evt} (2018)
Anti-acoplanarity sideband	δ	1.5 ± 1.1	1.6 ± 0.8	14.2 ± 3.0
Anti-pruned mass sideband	δ	0.4 ± 0.2	0.9 ± 0.2	9.9 ± 0.9
Event mixing	δ	0.5 (< 2.1)	1.5 (< 3.6)	11.6 ± 9.4
Expected signal	δ	1.3	1.4	9.0
$(a_0^Z / \Lambda^2 = 1 \times 10^{-5} \text{GeV}^{-2})$				
Anti-acoplanarity sideband	0	1.5 ± 1.1	3.7 ± 1.5	37.4 ± 5.6
Anti-pruned mass sideband	0	2.1 ± 0.8	5.4 ± 1.3	41.7 ± 3.1
Event mixing	0	2.0 ± 1.8	6.3 ± 5.1	42 ± 16
Expected signal	0	1.0	1.6	12.8
$(a_0^Z / \Lambda^2 = 1 \times 10^{-5} \text{GeV}^{-2})$				

Exclusive production of W/Z pairs IV.

• Systematic uncertainties:

- Tight matching between protons and jets: 30%
- Jet energy scale: few-10%
- Total efficiency uncertainty per arm: 10% (2016), 2-3% (2017-2018)
- Integrated luminosity: 1.2% (2016), 2.3% (2017), 2.5% (2018)
- Overall uncertainty for PPS data: 1.8%
- Data vs MC (pruned mass and τ_{21}): below 1%
- Background:
 - Normalization (nominal acoplanarity sideband method): 15-20% (2018), >100% (2016)
 - Dependence on the sideband region: few% (2018), 80% (2016)

arXiv: 2211.16320 (CMS, SMP-21-014)

Exclusive production of W/Z pairs V.

Coupling	Observed (expected) 95% CL upper limit No clipping	• Observed (expected) 95% CL upper limit Clipping at 1.4 TeV	Further results: - conversio
$ f_{M,0}/\Lambda^4 $	$66.0~(60.0)~{\rm TeV^{-4}}$	79.8 (78.2) TeV $^{-4}$	n of limits
$\left f_{M,1}/\Lambda^4\right $	245.5 (214.8) TeV^{-4}	$306.8 (306.8) \mathrm{TeV}^{-4}$	to dim-8
$ f_{M,2}/\Lambda^4 $	9.8 (9.0) TeV $^{-4}$	$11.9 (11.8) \mathrm{TeV}^{-4}$	operators
$ f_{M,3}/\Lambda^4 $	73.0 (64.6) TeV^{-4}	91.3 (92.3) TeV^{-4}	(IT all, but
$ f_{M,4}/\Lambda^4 $	$36.0(32.9)\mathrm{TeV}^{-4}$	$43.5~(42.9)~{\rm TeV}^{-4}$	one $T_{M,i}$
$ f_{M,5}/\Lambda^4 $	$67.0~(58.9)~{ m TeV}^{-4}$	$83.7 (84.1) \mathrm{TeV}^{-4}$	are zero)
$\left f_{M,7}/\Lambda^4\right $	$490.9~(429.6)~{\rm TeV}^{-4}$	$613.7~(613.7)~{\rm TeV^{-4}}$	

(CMS-PAS-EXO-21-007) Exclusive yy production at high mass with tagged protons: preliminary updates I.

- Data sample (full Run 2 data):
 - Integrated luminosity: 9.8 fb⁻¹ (2016), 37.2 fb⁻¹ (2017), 55.7 fb⁻¹ (2018)

• LbL signal simulation: FPMC

- ALP masses: 500-2000 GeV

Background simulations:

- Dominant $\gamma\gamma$ +jets & sub leading ($t\bar{t}+j$ and $V+\gamma$): NLO, MadGraph5_aMC@NLO (with NNPDF3.0 PDFs at NNLO)
- QCD background estimation (electron and photon enriched QCD sample): PYTHIA 8 (with CP5 ULE tune)

• Detector response of CMS: Geant4

(CMS-PAS-EXO-21-007) Exclusive yy production at high mass with tagged protons: preliminary updates II.

• Event selection:

Region	Selection
	Double photon HLT
	$p_T^{\gamma} > 75$ (100) GeV for 2016 (2017-2018)
	$\dot{H}/E < 0.10$
Preselection	MVA WP90 photon ID with electron veto
	$ \eta^{\gamma} < 2.5$ (transition veto)
	$m_{\gamma\gamma} > 350 \text{ GeV}$
Exclusive selection	<i>a</i> < 0.0025
$\xi\in \mathrm{PPS}$	$0.02 < {\xi}^{\pm}_{\gamma\gamma} < 0.20$
Asymmetric ξ acceptance	$0.035 < \xi_{PPS} < 0.15$ (0.18) for sector-45 (sector-56)

(CMS-PAS-EXO-21-007) Exclusive yy production at high mass with tagged protons: preliminary updates III.

Background estimation (PU as main source):

- Adding protons to the diphoton pair (from same run, LHC crossing-angle)
- Validation from orthogonal set (reversed acoplanarity criterium) or using simulated events
- Total number of background events: 1.103 \pm 0.003 (stat)

Systematic uncertainties:

Source	2016	2017	2018
CMS Luminosity	1.2%	2.3%	2.5%
Background estimation	23.3%	25.2%	20.9%
Photon ID scale factors	3.1%	7.0%	2.9%
Rapidity Gap Survival Probability	10%	10%	10%
Particle Showers in PPS	_	_	1.7%

(CMS-PAS-EXO-21-007) Exclusive yy production at high mass with tagged protons: preliminary updates IV.

Further results: ALP signal efficiency · acceptance

Axion-like particles with AFP I.

• Data sample:

- 2017, pp, $\sqrt{s} = 13$ TeV
- Integrated luminosity: 14.6 fb⁻¹
- <#interaction/bunch> = 36
- Diphoton trigger:
- 2 EM calorimeter clusters with E_{τ} > 35 (or 25) GeV
- AFP: at least 3 operational Si planes

• Simulated signal: SuperChic 4.02 MC

- ALP mass range: 150-1600 GeV
- ALP diphoton coupling: 0.05 TeV-1
- $|\eta| < 2.4$, $|y_{yy}| < 2.4$, $p_{\tau} > 20 \text{ GeV}$

Hadronization of dissociated-proton systems: PYTHIA 8.307

Detector response: Geant4-based

Axion-like particles with AFP II.

• Event selection:

- Calorimeter isolation (cluster R = 0.4) transverse momentum < $0.022E_T + 2.45$ GeV
- At least 2 photon: p_{τ} > 40 GeV, $|\eta|$ < 2.37, excluding barrel-to-endcap region 1.37 < $|\eta|$ < 1.52
- Acoplanarity < 0.01
- At least 1 (A-side / C-side) tagged proton, for which 0.035 < ξ < 0.08
- $-m_{_{YY}} < 500 \text{ GeV}$

Axion-like particles with AFP III.

Background estimation:

- Dominant from PU: "combinatorical"
 - Fully data-driven method
 - Fit on the mixed-data sample
 - Validation on a new mixed-data sample, orthogonal to the previous one (reversed acoplanarity condition)
- "Single-vertex": MC samples \rightarrow negligible
 - Photon-induced: SuperChic4.13
 - Diffractive processes: PYTHIA 8.306

Axion-like particles with AFP IV.

• Systematic	Source	Uncertainty			
uncertainties:	Signal yield uncertainty				
	Pile-up reweighting	$+2.7 \text{m}_{0}$			
	Luminosity	$\pm 2.4\%$			
	Photon identification efficiency	+1.6 %			
	Photon isolation efficiency	$\pm 1.9\%$			
	Beam optics between ATLAS central and AFP detectors	$+0.8 \text{m}_{\odot}$			
	AFP global alignment	+10.0 %			
	Proton reconstruction efficiency	$+3.0 \\ -2.2 \%$			
	Showering in the AFP	+6.6			
	Background modelling (mass-dependent)	$\pm (0.02 - 0.7)$ events			
	Signal modelling				
	Photon energy resolution	$^{+14.1}_{-4.8}$			
	Photon energy scale	$\pm (0.5 - 1.0)\%$			
	Signal cross-section uncertainty				
	Soft survival factor (exclusive process)	±2%			
	Soft survival factor (single-dissociative process)	±10%			
	Soft survival factor (double-dissociative process)	±50%			

Axion-like particles with AFP V.

$Z/\gamma + X$ production I.

• Data sample:

- 2017, pp, $\sqrt{s} = 13$ TeV
- Integrated luminosity: 37.2 fb-1
- Trigger either for:
 - Isolated proton
 - Electron/muon pair from Z
 - Prescaled trigger for photon case

• Signal simulation:

- m_{VX} distribution with exponential spectrum ($m_{VX} = m_X + \varepsilon + 100$ GeV)
 - m_X produced in a range
 - ε randomly distributed variable following exponential probability distribution function with decay constant of 0.04 GeV-1
- Detector acceptance as average of corresponding configurations at LHC

Background simulation: for validation (background modelled from data)

- Each process in coincidence with additional minimum-bias events: PYTHIA8 (PU events)
- Drell-Yan (Z+j): NLO, MadGraph5_aMC@NLO v2.2.2 (with FxFx merging)
- Isolated γ+j: LO, MadGraph5_aMC@NLO (with MLM merging)
- Top production (single top $tW \& t\bar{t}$): POWHEG
- Diboson production (WW, ZZ, WZ): PYTHIA8 version 8.226
- SD & DD Z production: PYTHIA8 & POMWIG
- Parton shower generator: PYTHIA8
- Detector response: Geant4

$Z/\gamma + X$ production II.

• Event selection:

Selection/analysis	$Z ightarrow e^+ e^-/Z ightarrow \mu^+ \mu^-$	γ
	\geq 2 same-flavour leptons (e or μ)	
	opposite electric charge	
Leptons/photons	$p_{\rm T}(\ell_1) > 30{\rm GeV}$, $ \eta(\ell_1) < 2.4$	1γ within $ \eta(\gamma) < 1.44$
	$p_{\rm T}(\ell_2)>20{\rm GeV}$, $ \eta(\ell_2) <2.4$	
	$ m(\ell_1, \ell_2) - m_Z < 10 \text{GeV}$	
Boson $p_{\rm T}$	$p_{\rm T}({\rm Z}) > 40{ m GeV}$	$p_{\mathrm{T}}(\gamma) > 95 \mathrm{GeV}$
Protons	$0.02 < \xi_+^{ m gen} < 0.16$ and	$0.03 < \xi_{-}^{ m gen} < 0.18$

$Z/\gamma + X$ production III.

Background estimation:

- Sources:
 - Inclusive SM $(Z+j / \gamma+j)$ & 2 protons from PU: "combinatorical"
 - Single diffractive (SD) & 1 proton from PU
 - Double diffractive (DD): assumed to be negligible
 - Exclusive SM ($\gamma\gamma \rightarrow II$): assumed to be negligible
 - Signal-induced background (1/2 protons escaped)
- Event mixing (single & double) on control sample orthogonal to the signal one ($p_7 < 10 \text{ GeV}$):
 - Replacing 1/2 proton from random event, repeatedly 100 times
 - Correctly reproduces combinatorical background
 - Good approximation of SD case
- Twofold validation:
 - MC
 - Control sample (*eµ*)

$Z/\gamma + X$ production IV.

• Systematic uncertainties:

- Incorporated as nuisance parameters in profile likelihood fit
- Assumed to be uncorrelated between signal and background shapes or categories
- Sources:
 - PU proton spectra (mostly affects background): 4%
 - SD: 2%
 - CT-PPS efficiency: 2-5% (depending on event category)
 - Time dependence (signal): 1%
 - *p*_{*z*} spectrum: < 1%
 - Selection efficiency: 3%
 - Integrated luminosity: 2.3%
 - Limited event count: < 1%

$Z/\gamma + X$ production V.

• Further results:

CEP of $t\bar{t}$ with tagged protons I.

• Data sample:

- 2017, *pp*, √s = 13 TeV
- Integrated luminosity: 29.4 fb⁻¹

Signal simulation:

- FPMC (and equivalent for photons: EPA)
 - 0.02 < ξ < 0.2
- Top decays (vetoing fully hadronic decays): MadSpin

Background simulation:

- Dominant inclusive $t\bar{t} \& 2 PU$ protons: NLO, POWHEG v2.0
 - Cross section scaled to best theoretical prediction (NNLO): 832 pb
- Single top (*tW*): NNLO
- V+j, VV, Drell-Yan (DY)
- Parton showering and hadronization: PYTHIA8 (with CP5 ULE tune, NNPDF3.1 NNLO PDFs)
- Detector response: Geant4

CEP of $t\bar{t}$ with tagged protons II.

• Event selection:

- Multi-RP proton track in both arms
- lepton+jets:
 - Exactly 1 lepton satisfying: 30 GeV < p_T^{lepton} , $|\eta| < 2.1$ (electrons) or 2.4 (muons)
 - 25 GeV < $p_{T^{jet}}$, $|\eta| < 2.4$, R = 0.4
 - At least 2 jets b-tagged
 - At least 2 jets failing b-tagging
- Dilepton:
 - At least 2 charged leptons:
 - At least 1: 30 GeV < p_{τ} , $|\eta|$ < 2.1
 - Highest- p_{τ} candidates: opposite charge
 - Dilepton system: 20 GeV < M_{\parallel}
 - Same-flavour dilepton system outside of Z peak range: $M_{\parallel} < 76$ GeV or 106 GeV $< M_{\parallel}$
 - At least 2 b-tagged jets satisfying: 30 GeV < p_T^{jet} , $|\eta| < 2.4$, R = 0.4

B-tagging with Deep CSV

CEP of $t\bar{t}$ with tagged protons III.

- Background estimation:
 - MC samples
 - Source:
 - PU proton
 - Misidentification of signal
 - Event mixing
 - MVA: TMVA toolkit

CEP of $t\bar{t}$ with tagged protons IV.

• Systematic uncertainties:

- If BDT shape affected:
 - 353QH smoothing algorithm
 - Modified shapes compared to the nominal using Kolmogorov-Smirnov test
- Experimental:
 - Integrated luminosity: 2.3%
 - Efficiency corrections for the lepton trigger: 1-8%
- Theoretical:
 - Single top background normalization: 5%
 - Electroweak background normalization: 30%

CEP of $t\bar{t}$ with tagged protons V.

Coherent charmonium production in UPC I.

• Data sample:

- 2018, PbPb, $\sqrt{s_{NN}} = 5.02$ TeV
- Integrated luminosity: 228 \pm 10 $\mu b^{\mbox{--}1}$
- Simulated events (for corrections for detector resolution, acceptance and efficiency):
 - UPCs: STARlight (with specific LHCb configuration)
 - Decays of unstable particles: EvtGen (with QED finalstate radiation handled by PHOTOS)
- Detector response: Geant4

Coherent charmonium production in UPC II.

Event selection:

- Decay channels:
 - $J/\psi \rightarrow \mu^+\mu^-$
 - $\psi(2S) \rightarrow \mu^+\mu^-$
- 2.0 < yin nucleus-nucleus center-of-mass frame < 4.5
- Triggers:
 - Hardware-level: at least 1 muon of $p_{\tau} > 900 \text{ MeV}$
 - Software-level (minimum bias): at least 1 track reconstructed by the vertex detector
- Offline:
 - 2 muons with p_{τ} > 700 MeV in 2.0 < η < 4.5
 - Dimuon candidate with $p_{\tau} < 1$ GeV, $\Delta \phi > 0.9\pi$
 - Dimuon mass in either ± 65 MeV (J/ $\psi)$ or ± 77.35 MeV ($\psi(2S))$
- Vetoes for too high activity in HeRSCheL & SPD

arXiv: 2206.08221 (LHCb, LHCb-PAPER-2022-012)

Coherent charmonium production in UPC III.

Background estimation: fits

	Interval $[MeV/c]$	$N_{J/\psi}^{ m tot}$	$N_{J\!/\psi}^{ m coh}$	$10^5 E^{-1}$			· · · ·	
-	$0 < p_{\rm T}^* < 200$	21153 ± 175	20180 ± 175		[Cb			
-	$0 < p_{\rm T}^* < 20$	2216 ± 58	$2204\pm~58$		PbPb √s	$\overline{s_{\rm NN}} = 5.02 \text{ TeV}$	I Data	-
	$20 < p_{\rm T}^* < 40$	5647 ± 92	5619 ± 92	$\sum 10^{4}$	$1 2.0 < y^*$	^s < 4.5	Fit	
	$40 < p_{\rm T}^* < 60$	$5931\pm~83$	5885 ± 83	$\overline{\mathbf{S}}$	1		$-J/\psi$	-
	$60 < p_{\rm T}^* < 80$	$3928\pm~65$	$3863\pm~65$	$\sim 10^3$	11		$-\psi(2S)$	
	$80 < p_{\rm T}^* < 100$	1848 ± 44	$1759\pm~44$	ate			💥 Backgr	ound
	$100 < p_{\rm T}^* < 120$	497 ± 23	381 ± 24			•	^	-
	$120 < p_{\rm T}^* < 140$	225 ± 16	88 ± 17	10^2				
	$140 < p_{\rm T}^* < 160$	289 ± 17	137 ± 18	Ca				
	$160 < p_{\rm T}^* < 180$	328 ± 18	167 ± 20					
-	$180 < p_{\rm T}^* < 200$	244 ± 16	77 ± 17	10				
	Interval [MeV/ c]	$ N_{\psi(2S)}^{\text{tot}} \rangle$	$N_{\psi(2S)}^{\mathrm{coh}}$	3000		3500		4000
	$0 < p_{\rm T}^* < 20$	$0 475 \pm 41$	468 ± 41			ľ	$n_{\mu^+\mu^-}$ [Me	eV/c^2
	$0 < p_{\rm T}^* < 3$	$0 \qquad 77 \pm 35$	77 ± 35	Interval	$N_{J\!/\psi}^{ m tot}$	$N_{J/\psi}^{ m coh}$	$N_{\psi(2S)}^{ m tot}$	$N_{\psi(2S)}^{\mathrm{coh}}$
	$30 < p_{\rm m}^* < 7$	$0 275 \pm 39$	274 ± 39	$\frac{2.0 < y^* < 4.5}{2.0 < u^* < 2.5}$	$\frac{23355\pm183}{2457\pm60}$	$\frac{20193\pm199}{2070\pm66}$	513 ± 43 75 ± 15	471 ± 44 65 + 15
	$70 < p_1^* < 0$	0 01 + 14	91 + 14	2.0 < g < 2.3 $2.5 < y^* < 3.0$	6845 ± 100	5926 ± 108	147 ± 26	$\frac{05 \pm 15}{137 \pm 26}$
	$10 < p_{\rm T} < 5$	$\begin{array}{ccc} 0 & 51 \pm 14 \\ 0 & 57 \pm 9 \end{array}$	31 ± 14 37 ± 9	$3.0 < y^* < 3.5$	7875 ± 106	6883 ± 115	168 ± 26	161 ± 26
	$90 < p_{\rm T} < 11$	$\begin{array}{ccc} 0 & 21 \pm 0 \\ 0 & 0 + 5 \end{array}$	21 ± 0	$3.5 < y^* < 4.0$	5019 ± 82	4362 ± 90	102 ± 18	85 ± 18
	$110 < p_{\rm T}^* < 15$	$0 \qquad 0 \pm 5$	0 ± 5	$4.0 < y^* < 4.5$	1100 ± 38	950 ± 44	24 ± 8	21 ± 8
	$150 < p_{\rm T}^* < 20$	$0 \qquad 5\pm 4$	2 ± 4					27

Coherent charmonium production in UPC IV.

Systematic uncertainties:

Source	Relative	uncertainty [%]
	$\sigma^{ m coh}_{J\!/\psi}$	$\sigma_{\psi}(2S)^{\mathrm{coh}}$
Tracking efficiency	0.5 - 2.0	0.5 – 2.0
PID efficiency	0.9 - 1.6	0.9 - 1.6
Trigger efficiency	2.7 – 3.7	2.1 – 2.5
HERSCHEL efficiency	1.4	1.4
Background estimation	1.2	1.2
Signal shape	0.04	0.04
Momentum resolution	0.9 - 34	1.3 - 27
Branching fraction	0.6	2.1
Luminosity	4.4	4.4

arXiv: 2206.08221 (LHCb, LHCb-PAPER-2022-012)

٠

data stat. unc.

- LTA_W

Guzev et al.

---- LTA_S

- EPS09

Krelina *et al.* GBW+BT ---- GBW+POW

syst. unc.

Coherent charmonium production in UPC V.

Further results: 5.51.55.0LHCb PbPb $\sqrt{s_{\rm NN}} = 5.02 \text{ TeV}$ LHCb 4.5Coherent J/ψ production $\begin{bmatrix} 4.0 \\ 4.0 \\ 3.5 \end{bmatrix} * \hbar p / \frac{1}{2.0} 2.5 \\ \frac{1}{2.0} 1.5$ PbPb $\sqrt{s_{\rm NN}} = 5.02 \text{ TeV}$ dm Luminosity unc. : 4.4%առուսուս Coherent $\psi(2S)$ production 1.0 $\mathrm{d}\sigma_{\psi(2\mathrm{S})}^{\mathrm{d}}/\mathrm{d}y^{*} \left[\begin{smallmatrix} 1\\ 0\\ 0\\ 0 \end{smallmatrix} ight]$ Luminosity unc. : 4.4%1.00.50.00.023 2 3 0 1 1 4 0 y^*

Exclusive pion pair production I.

Data sample:

- October 2011, pp, $\sqrt{s} = 7$ TeV
- Special run: β^* = 90 m, low PU (μ = 0.035), 7 $\cdot 10^{10}$ protons / bunch
- Integrated luminosity: 78.7 \pm 0.1 (stat) \pm 1.9 (syst) $\mu b^{\mbox{--}1}$

MC generators:

- GenEx (baseline calculations of detection & reconstruction efficiency):
 - Exclusive continuum of $\pi^+\pi^-$ & K^+K^-
 - Exponential parametrization for the meson form factor (only free parameter)
 - Non-resonant production without absorption correction
 - No rapidity gap survival probability
 - Pions generated: $|\eta| < 2.7$, off-shell-pion form-factor parameter = 1 GeV
- Dime (for comparison & model uncertainties):
 - Other channels also included: exclusive $\varrho\varrho$ or $\varphi\varphi$
 - 4 different models for absorption with 3 different parametrization of the meson form factor (exponential, <u>Orear-like</u>, power-like)
- CEP background: PYTHIA8 version 8.183 (with ATLAS A2 set of tuned parameters and MSTW20008LO PDF set, excluding exclusive pion-pair process)
- Detector response: Geant4

Exclusive pion pair production II.

Event selection:

Selection

Bunch selection Lumi blocks selection Trigger configuration Pions: number of tracks primary vertex ID track quality MBTS veto Protons: ALFA track quality ALFA *uv*-condition ALFA clean track ALFA geometry condition Full system momentum balance in p_x and p_y Fiducial region

arXiv: 2212.00664 (ATLAS, STDM-2017-07)

Exclusive pion pair production III.

Background estimation:

- Combinatorical: suppressed by event selection
- MBTS veto: great background suppression
- Other central diffraction processes also suppressed

arXiv: 2212.00664 (ATLAS, STDM-2017-07)

Exclusive pion pair production IV.

Systematic uncertainties:

	Uncer	rtainty [%]
Source of uncertainty	elastic	anti-elastic
Trigger efficiency $\epsilon_{\rm trig}$	± 0.1	± 0.3
Background determination	± 3.5	± 3.5
Signal and background corrections:		
Beam energy	± 0.1	± 0.1
ID material	+4.8	+4.1
Veto on MBTS signal	± 1.3	± 2.0
ALFA single-track selection	± 0.9	± 0.9
ALFA reconstruction efficiency	± 0.9	± 0.8
ALFA geometry selection	± 0.5	± 0.5
Optics	± 1.1	± 1.0
	+6.4	+6.0
Overall systematic uncertainty	-4.2	-4.4
Statistical uncertainty	± 21.2	± 61.6
Theoretical modelling	± 2.8	± 8.0
Luminosity	± 1.2	± 1.2

Exclusive pion pair production V.

• Further results:

Exclusive $\pi^+\pi^-$ cross-section [µb]								
Elastic configuration								
Measurement	$4.8 \pm 1.0 \text{ (stat)} ^{+0.3}_{-0.2} \text{ (syst)} \pm 0.1 \text{ (lumi)} \pm 0.1 \text{ (model)}$							
GenEx \times 0.22 (absorptive correction)	1.5							
Dime	1.6							
Anti-elastic configuration								
measurement	$9 \pm 6 \text{ (stat)}^{+1}_{-1} \text{ (syst)} \pm 1 \text{ (lumi)} \pm 1 \text{ (model)}$							
GenEx \times 0.22 (absorptive correction)	2							
Dime	3							

Total cross section measurements with ALFA I.

Data sample:

- September 2016, *pp*, $\sqrt{s} = 13$ TeV
- Special run: $\beta^* = 2.5$ km, $6 \cdot 10^{10}$ protons / bunch
- Integrated luminosity: 339.9 \pm 0.1 (stat) \pm 7.3 (syst) $\mu b^{\mbox{-}1}$

Simulation model:

- MC for acceptance and unfolding corrections
- Background DPE: PYTHIA 8.303
- Detector response: Geant4

Total cross section measurements with ALFA II.

-			Selection criterion			Numbers of events			
• Evont		Preselection			2558637				
	/ent	L			Arm 1	Fraction	${\rm Arm}~2$	Fraction	
selection:		Reconstructed tracks		1289282		1269355			
		Cut on	$x \text{ A vs C} (3.5\sigma)$	1254738	97.32%	1235792	97.36%		
			Cut on	y A vs C (2 mm)) 1249888	96.95%	1231251	96.99%	
			Cut on	$x \text{ vs } \theta_x (3.5\sigma)$	1248597	96.84%	1230084	96.91%	
			Beam-s	creen cut	1243941	96.48%	1225375	96.53%	
			Edge c	ut	1231848	95.55%	1210759	95.38%	
			Cut on	$y \text{ vs } \theta_y $ (40 µrad) 1214717	94.22%	1195251	94.16%	
Total selected				2409968					
Fill	Run	Luminosity	$[\mu b^{-1}]$	Selected elastic	Reconstructi	on efficiency	_		
		_		event candidates	Arm 1 $[\%]$	Arm 2 [%]			
5313	308979		21.38	423862	84.82 ± 0.56	83.11 ± 0.87	_		
5313	308982		6.81	136499	85.84 ± 0.54	84.44 ± 0.55			
5314	309010		41.27	846581	87.11 ± 0.51	85.00 ± 0.64			
5317	309039		120.08	2409968	85.45 ± 0.49	83.23 ± 0.52			
5317	309074		44.31	887373	85.55 ± 0.39	83.48 ± 0.48			
5321	309165		55.87	1149499	87.08 ± 0.40	85.41 ± 0.44			
5321	309166		50.17	1043576	88.28 ± 0.38	86.43 ± 0.45	_		
Total			339.89	6897358					

Total cross section measurements with ALFA III.

- Background estimation:
 - Data-driven: templates of halohalo & halo+SD
 - Non-elastic, from central diffraction: double-pomeron exchange (DPE)
 - SD with PU proton(s)
 - Event mixing

Total cross section measurements with ALFA IV.

Total cross section measurements with ALFA V/a.

• Further results: relative systematic shifts resulting from uncertainties

50

Total cross section measurements with ALFA V/b.

• Further results: relative systematic shifts resulting from uncertainties

Total cross section measurements with ALFA V/c.

Further results: Nuclear slope fits

Total cross section measurements with ALFA V/d.

Total cross section measurements with ALFA V/e.

Further results:

